Chapter 2

Blind Search

Many problems in Artificial Intelligence (AI) can be formulated as network search problems. The crudest algorithms for solving problems of this kind, the so called blind search algorithms, use the network's connectivity information only. We are going to consider examples, applications and Prolog implementations of blind search algorithms in this chapter.

Since implementing solutions of problems based on search usually involves code of some complexity, modularization will enhance clarity, code reusability and readibility. In preparation for these more complex tasks in this chapter, Prolog's module system will be discussed in the next section.

2.1 Digression on the Module System in Prolog

In some (mostly larger) applications there will be a need to use several input files for a Prolog project. We have met an example thereof already in Fig. 3.5 of [9, p. 85] where consult/1 was used as a directive to include in the database definitions of predicates from other than the top level source file. As a result, all predicates thus defined became visible to the user: had we wished to introduce some further predicates, we would have had to choose the names so as to avoid those already used. Clearly, there are situations where it is preferable to make available (that is, to export) only those predicates to the outside world which will be used by other non-local predicates and to hide the rest. This can be achieved by the built-in predicates module/2 and use_module/1.

As an illustrative example, consider the network in Fig. 2.1. ${ }^{1}$ The network connectivity in links.pl is defined by the predicate link/2 which uses the auxiliary predicate connect/2 (Fig. 2.2).

The first line of links. pl is the module directive indicating that the module name is edges and that the predicate link/2 is to be exported. All other predicates defined in links.pl (here: connect/2) are local to the module and (normally) not visible outside this module.

Suppose now that in some other source file, link/2 is used in the definition of some new predicate (Fig. 2.3). Then, the (visible) predicates from links.pl will be imported by means of the directive

$$
\text { :- use_module(links). }{ }^{2}
$$

The new predicate thus defined may be used as usual:

[^0]

Figure 2.1: A Network

```
?- consult(df1).
% links compiled into edges 0.00 sec, 1,644 bytes
% df1 compiled 0.00 sec, 3,208 bytes
Yes
?- successors(a,L).
```



```
:- module(edges,[link/2]).
connect(a,b). connect(a,d). connect(a,s).
connect(b,c). connect(b,e).
connect(d,e). connect(d,s).
connect(e,f).
connect(f,g).
link(Node1,Node2) :- connect(Node1,Node2).
link(Node1,Node2) :- connect(Node2,Node1).
```

Figure 2.2: The File links.pl

```
:- use_module(links).
...
...
successors(Node,SuccNodes) :-
    findall(Successor,link(Node,Successor), SuccNodes).
```

Figure 2.3: Fragment of the File $\mathrm{df} 1 . \mathrm{pl}$

```
L = [b, d, s] ;
No
```

In our example, the predicate connect/2 will not be available for use (since it is local to the module edges that resides in links.pl). A local predicate may be accessed, however, by prefixing its name by the module name in the following fashion: ${ }^{3}$
?- edges: connect (a, N).
$\mathrm{N}=\mathrm{b}$;
$\mathrm{N}=\mathrm{d}$;
$\mathrm{N}=\mathrm{s}$;
No
(Notice the distinct uses of the module name and the name of the file in which the module resides.)

2.2 Basic Search Problem

Let us assume that for the network in Fig. 2.1 we want to find a path from the start node s to the goal node g. The search may be conducted by using the (associated) search tree shown in Fig. 2.4. It is seen that the

[^1]

Figure 2.4: The Search Tree
search tree is infinite but highly repetitive. The start node s is at the root node (level 0). At level 1 , all tree nodes are labelled by those network nodes which can be reached in one step from the start node. In general, a node labelled n in the tree at level ℓ has successor (or child) nodes labelled s_{1}, s_{2}, \ldots if the nodes s_{1}, s_{2}, \ldots in the network can be reached in one step from node n. These successor nodes are said to be at level $\ell+1$. The node labelled n is said to be a parent of the nodes s_{1}, s_{2}, \ldots. In Fig. 2.4, to avoid repetition, those parts of the tree which can be generated by expanding a node from some level above have been omitted.

Some Further Terminology

- The connections between the nodes in a network are called links.
- The connections in a tree are called branches.
- In a tree, a node is said to be the ancestor of another if there is a chain of branches (upwards) which connects the latter node to the former. In a tree, a node is said to be a descendant of another node if the latter is an ancestor of the former.

In Fig. 2.5 we show, for later reference, the fully developed (and 'pruned') search tree. It is obtained from Fig. 2.4 by arranging that in any chain of branches (corresponding to a path in the network) there should be no two nodes with the same label (implying that in the network no node be visited more than once). All information pertinent to the present problem is recorded thus in the file links.pl (Fig. 2.2) by link/2. Notice that the order in which child nodes are generated by link/2 will govern the development of the trees in Figs. 2.4 and 2.5: children of the same node are written down from left to right in the order as they would be obtained by backtracking; for example, the node labelled d at level 1 in Fig. 2.4 is expanded by

```
?- link(d,Child).
```


Figure 2.5: The Pruned Search Tree


```
Child = e
Child = s ;
Child = a ;
No
```

(The same may be deduced, of course, by inspection from links.pl, Fig. 2.2.) link/2 will serve as input to the implementations of the search algorithms to be discussed next.

2.3 Depth First Search

The most concise and easy to remember illustration of Depth First is by the conduit model (Fig. 2.6). We start with the search tree in Fig. 2.5 which is assumed to be a network of pipes with inlet at the root node s. The tree is rotated by 90° counterclockwise and connected to a valve which is initially closed. The valve is then opened and the system is observed as it gets flooded under the influence of gravity. The order in which the nodes are wetted corresponds to Depth First.

Figure 2.6: Depth First Search - The Conduit Model

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons" Jane, Chinese architect

Click to hear me talking before and after my unique course download

```
:- use_module(links).
path(Node1,Node2,[Node1,Node2]) :- link(Node1,Node2).
path(Node1,Node2,[Node1|Path32]) :- link(Node1,Node3),
    write('visiting node '), write(Node3), nl,
    path(Node3,Node2,Path32).
```

Figure 2.7: The File naive.pl

2.3.1 Naïve Solution

We may be tempted to use Prolog's backtracking mechanism to furnish a solution by recursion; our attempt is shown in Fig. 2.7. ${ }^{4}$ However, it turns out that the implementation does not work due to cycling in the network. The query shown below illustrates the problems arising.

```
?- path(s,g,Path).
visiting node a
visiting node b
visiting node c
visiting node b
visiting node c
Action (h for help) ? abort
% Execution Aborted
```


2.3.2 Incremental Development Using an Agenda

We implement Depth First search incrementally using a new approach. The idea is keeping track of the nodes to be visited by means of a list, the so called list of open nodes, also called the agenda. This book-keeping measure will turn out to be amenable to generalization; in fact, it will be seen that the various search algorithms differ only in the way the agenda is updated.

First Version

A first, preliminary, form of Depth First search is stated in Algorithm 2.3.1. The definition of the corresponding predicate, depth_first/2, is shown in Fig. 2.8. (At this stage, we are attempting an implementation which merely succeeds once the goal node is found.)

[^2]```
Algorithm 2.3.1: DepthFirst(StartNode, GoalNode)
comment: First temptative implementation of Depth First Search
RootNode \(\leftarrow\) StartNode
OpenList \(\leftarrow[\) RootNode \(]\)
\([H \mid T] \leftarrow\) OpenList
while \(H \neq\) GoalNode
 \(\left\{\begin{array}{l}\text { SuccList } \leftarrow \text { successors of } H \\ \text { OpenList } \leftarrow \text { SuccList }+T\end{array}\right.\)
 do \(\{\) if OpenList \(=[]\)
 then return (failure)
 \([H \mid T] \leftarrow\) OpenList
return (success)
```

What is the crucial feature of this algorithm? It is the way the list of open nodes is manipulated. There are two possibilities:


Download free eBooks at bookboon.com


Click on the ad to read more

```
:- use_module(links).
depth_first(Start,Goal) :- dfs_loop([Start],Goal).
dfs_loop([Goal|_],Goal).
dfs_loop([CurrNode|OtherNodes],Goal) :-
 successors(CurrNode,SuccNodes),
 write('Node '), write(CurrNode),
 write(' is being expanded. '),
 append(SuccNodes,OtherNodes,NewOpenNodes),
 write('Successor nodes: '), write(SuccNodes), nl,
 write('Open nodes: '), write(NewOpenNodes), nl,
 dfs_loop(NewOpenNodes,Goal).
successors(Node,SuccNodes) :-
 findall(Successor,link(Node,Successor),SuccNodes).
```

Figure 2.8: The File df1.pl

- Inspection. We may inspect the agenda's head to see whether it is the goal node.
- Updating. If the head is not the goal node, we determine the head's successor or successors. They are collected into a list, SuccList, say, (which may well be empty) and a new agenda will be formed by appending the tail of the old agenda to SuccList. The order of entries in the list just created is essential: the successors of the most recently visited node are placed to the front, thereby becomig candidates for more immediate attention.

As mentioned earlier, search algorithms differ from each other only in the way the list of open nodes is updated. The updating mechanism of Depth First is on a last-in-first-out (LIFO) basis.

The (unsatisfactory) behaviour of depth_first/2 in the present form is exemplified in Fig. 2.9. Obviously, the order of the nodes' expansion is as expected but we descend into ever greater depths of (the leftmost part of) the tree in Fig. 2.4. There are two possible solutions to this problem - they will be discussed below.

## Using a List of 'Closed Nodes'

The underlying idea of this approach is that a node on the search tree should not be included in the open list (again) if a node with the same label has ever been visited before. The examples below will show (and indeed a moment of reflection should confirm) that this method may not find all goal nodes (or all paths to the goal node(s)). The realization of the idea is as follows. Once we remove $H$ from the list of open nodes (Algorithm 2.3.1) we should include $H$ into another list, the list of closed nodes, indicating that it should not be expanded (i.e. included in the list of open nodes) ever again. This version of Depth First search is shown as Algorithm 2.3.2. The corresponding Prolog program, df2.pl, is shown in Fig. 2.10. Finally, an interactive session with this second version of depth_first/2 is shown in Fig. 2.11. The missing (shaded) parts in Fig. 2.10 are goals for displaying information on the progress of the search as seen in Fig. 2.11.

Exercise 2.1. Complete the code in Fig. 2.10 such that the response shown in Fig. 2.11 is achieved.

```
?- depth_first(s,g).
Node s is being expanded. Successor nodes: [a, d]
Open nodes: [a, d]
Node a is being expanded. Successor nodes: [b, d, s]
Open nodes: [b, d, s, d]
Node b is being expanded. Successor nodes: [c, e, a]
Open nodes: [c, e, a, d, s, d]
Action (h for help) ? abort
% Execution Aborted
```

Figure 2.9: Illustrative Query for depth_first/2 - First Version

```
Algorithm 2.3.2: DepthFirst(StartNode, GoalNode)
comment: Depth First Search with a List of Closed Nodes
RootNode \(\leftarrow\) StartNode
OpenList \(\leftarrow\) [RootNode]
ClosedList \(\leftarrow[]\)
\([H \mid T] \leftarrow\) OpenList
while \(H \neq\) Goal Node
 SuccList \(\leftarrow\) successors of \(H\)
 OpenList \(\leftarrow\left(\right.\) SuccList \(\cap\) ClosedList \(\left.{ }^{c}\right)+T\)
ClosedList \([H \mid C l o s e d L i s t]\)
 do \(\left\{\begin{array}{l}\text { if OpenList }=[]\end{array}\right.\)
 then return (failure)
 \([H \mid T] \leftarrow\) OpenList
return (success)
```

```
:- use_module(links).
depth_first(Start,Goal) :- ..., % clause 0
 dfs_loop([Start],[],Goal). %
dfs_loop([Goal|_],_,Goal) :- % clause 1
dfs_loop([CurrNode|OtherNodes],ClosedList,Goal) :- % clause 2
 successors(CurrNode,SuccNodes), }
 findall(Node, (member(Node,SuccNodes),
 not(member(Node,ClosedList))),Nodes), }
 append(Nodes,OtherNodes,NewOpenNodes),
 ..., %
 dfs_loop(NewOpenNodes, [CurrNode|ClosedList],Goal). %
successors(Node,SuccNodes) :- Implements (3)
 findall(Successor,link(Node,Successor),SuccNodes).
```

Figure 2.10: The File df2.pl

## LIGS University based in Hawaii, USA

 is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs: enroll by October 31st, 2014 and- save up to $11 \%$ on the tuition!
- pay in 10 installments / 2 years
- Interactive Online education
visit www. ligsuniversity.com to find out more!

Note: LIGS University is not accredited by anv nationally recognized accrediting agency listed by the US Secretary of Education. More info here.


```
?- depth_first (s,g).
Open: [s], Closed: []
Node s is being expanded. Successors: [a, d]
Open: [a, d], Closed: [s]
Node a is being expanded. Successors: [b, d, s]
Open: [b, d, d], Closed: [a, s]
Node b is being expanded. Successors: [c, e, a]
Open: [c, e, d, d], Closed: [b, a, s]
Node c is being expanded. Successors: [b]
Open: [e, d, d], Closed: [c, b, a, s]
Node e is being expanded. Successors: [f, b, d]
Open: [f, d, d, d], Closed: [e, c, b, a, s]
Node f is being expanded. Successors: [g, e]
Open: [g, d, d, d], Closed: [f, e, c, b, a, s]
Goal found: g
Yes
```

Figure 2.11: Illustrative Query for depth_first/2 - Second Version


Figure 2.12: The New Network Component

Exercise 2.2. Suppose we want to model a network which arises by augmenting the graph in Fig. 2.1 with the one shown in Fig. 2.12, p. 59. (The new network thus comprises two unconnected components.)
(a) Augment the database in Fig. 2.2 to reflect the connectivity of the new network.
(b) Write down hand computations for the queries
(i) ?- depth_first (d, c).
(ii) ?- depth_first(u,c).

The predicate depth_first/2 from df2.pl (Fig. 2.10) finds a goal node (if there is one) but does not return the correspondig path. (We ignore the shaded clauses in Fig. 2.10 as they are there for explanatory reasons only.) A new, improved version, depth_first(+Start, +Goal,-Path), say, should return also the Path found,
given the Start node and the Goal node. We modify the auxiliary predicate $d f s_{-} l o o p / 3$ from df2.pl in two ways.

- Now, its first argument will take the list of open paths (and not that of open nodes). This is the argument where we accumulate (maintain) the agenda.
- Into an additional (fourth) argument will the path from Start to Goal be copied as soon as it appears at the head of the agenda. The search is then finished.
- The second and third arguments of dfs_loop/4 will hold, as before, the list of closed nodes and the goal node, respectively.

The hand computations in Fig. 2.13, p. 61, indicate the required behaviour of the new version of depth_first/3.
Paths will be represented by the lists of nodes visited; internally, they will be read from right to left. For example, the list $[g, f, e, b, a, s]$ will stand for the path $s \rightarrow a \rightarrow b \rightarrow e \rightarrow f \rightarrow g$. In Fig. 2.13, all paths we have been temporarily admitted to the agenda which arise by expanding the head of the head of the agenda. (Expanding a node means finding its successors.) Immediately after expansion, however, those paths have been removed (indicated by /////) whose head features in the list of closed nodes in the line above. To implement the corresponding predicate depth_first/3 (Fig.2.14, p. 63), Algorithm 2.3.3 has been used with an auxiliary procedure ExtendPath.


```
depth_first(s, g, Path) ~~
dfs_loop([[s]], [], g, Path) ~
djs_loop([[a,s],[a,s]], [s], g, Path) ~
djs_loop([[b,a,s], [a,a,s], {s,,d,/s],[a,s]],[a,s], g, Path)}~
djs_loop([[c,b,a,s], [e,b,a,s], \\alpha,b/{\alpha,p\rangle, [a,a,s],[a,s]],[b,a,s], g, Path)}~
djs_loop([[\phi/q,\phi,/\phi,\phi\phi,[e,b,a,s], [a,a,s],[a,s]], [c,b,a,s],g,Path)~}
djs_loop([[f,e,b,a,s],[b/q,\phi,\phi,q,s],[a,e,b,a,s],[a,a,s],[a,s]],[e,c,b,a,s],g, Path)~}
```



```
dfs_loop([[g,f,e,b,a,s],[a,e,b,a,s],[a,a,s],[a,s]],[f,e,c,b,a,s],g,[g,f,e,b,a,s])~}
depth_first(s, g, [g,f,e,b,a,s]) ~ success
```

Figure 2.13: Hand Computations for the Query ?- depth_first ( $s, g$, Path).

Exercise 2.3. Define extend_path(+Nodes,+Path,-NewPaths) from Algorithm 2.3.3.

```
Algorithm 2.3.3: DepthFirst(StartNode, GoalNode)
comment: Depth First with Closed Nodes and Open Paths
procedure ExtendPath \(\left(\left[x_{1}, \cdots, x_{N}\right]\right.\), list \()\)
 comment: To return [] if the first argument is []
 for \(i \leftarrow 1\) to \(N\)
 do \(\left\{\right.\) list \(_{i} \leftarrow\left[x_{i} \mid l i s t\right]\)
 return \(\left(\left[\right.\right.\) list \(_{1}, \cdots\), list \(\left.\left._{N}\right]\right)\)
main
 RootNode \(\leftarrow\) StartNode
 OpenPaths \(\leftarrow[[\) RootNode \(]]\)
 ClosedNodes \(\leftarrow[]\)
 \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
 while \(H \neq\) Goal Node
 SuccList \(\leftarrow\) successors of \(H\)
 NewOpenNodes \(\leftarrow\left(\right.\) SuccList \(\cap\) ClosedList \(\left.{ }^{c}\right)\)
 NewPaths \(\leftarrow\) ExtendPath \((\) NewOpenNodes, \([H \mid T])\)
 do \(\{\) OpenPaths \(\leftarrow\) NewPaths + TailOpenPaths
 if OpenPaths = []
 then return (failure)
 \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
 Path \(\leftarrow \operatorname{ReVERSE}([H \mid T])^{5}\)
 output (Path)
```

In the query shown below, the predicate depth_fist/3 thus defined finds the leftmost path to the goal node in Fig. 2.4. On backtracking, no further paths to the goal node will be found.

```
?- depth_first(s,g,Path).
Path = [s, a, b, e, f, g] ;
No
```


## Path Checking

This technique allows all paths to the goal node to be found. We do not use a list of closed nodes here. Instead, upon prefixing the head of the agenda by each of the successors of its head, we check for each of the lists thus created whether it is a path. In Algorithm 2.3.4, p. 64, this test is carried out by the as yet unspecified procedure IsPath. Usually, paths will be required not to contain cycles. Then, the procedure IsPath checks for distinct entries of the argument list. ${ }^{6}$

The main body of Algorithm 2.3.4 has been implemented by the predicate depth_first/4, defined in df4.pl, Fig. 2.15, p. 65. A few noteworthy features of this implementation of Depth First are as follows.

[^3]```
:- use_module(links).
depth_first(Start,Goal,PathFound) :-
    dfs_loop([[Start]],[],Goal,PathFoundRev),
    reverse(PathFoundRev,PathFound).
dfs_loop([[Goal|PathTail]|],_,Goal,[Goal|PathTail]).
dfs_loop([[CurrNode|T]|Others],ClosedList,Goal,PathFound) :-
    successors(CurrNode,SuccNodes),
    findall(Node,(member(Node,SuccNodes),
            not(member(Node,ClosedList))),Nodes),
    extend_path(Nodes,[CurrNode|T],Paths),
    append (Paths,Others,NewOpenPaths),
    dfs_loop(NewOpenPaths, [CurrNode|ClosedList],Goal,PathFound).
successors(Node,SuccNodes) :-
    findall(Successor,link(Node,Successor),SuccNodes).
% auxiliary predicate extend_path/3 ...
```

Figure 2.14: The File df3.pl - Depth First with Closed Nodes and Open Paths

- The arguments of depth_first(+Start, +G_Pred, +C_Pred,-PathFound), the main predicate, play the following rôle:
- As before, Start is unified with the start node.
- G_Pred is unified with the name of the goal predicate. (In earlier implementations, a goal node was expected.) Due to this generalization, in more complex applications, now a goal node may be specified by a condition. Several goal nodes may thus also be accounted for.
- The third argument, C_Pred, is unified with the name of the connectivity predicate which in earlier implementations was $l i n k / 2$. Greater flexibility is afforded by this additional argument. In the example query in Fig. 2.17, p. 66, the connectivity predicate $l i n k / 2$ is used which is defined in links.pl (see p. 49) from where it is imported by the first use_module/1 directive in $\mathrm{df} 4 . \mathrm{pl}$.
- Finally, on return, the last argument is unified with the path found.

```
Algorithm 2.3.4: DepthFirst(StartNode, G_Pred, C_Pred)
comment: Depth First with Path Checking.
Procedures are assumed available for
    - Testing whether a path is a goal path by using
    the procedure in G_Pred;
    - Finding successors of a node by using the con-
                nectivity procedure in C_Pred.
procedure IsPath (list)
    comment: Returns a Boolean value.
                Is application specific.
\(\vdots\)
main
    RootNode \(\leftarrow\) StartNode
    OpenPaths \(\leftarrow[[\) RootNode \(]]\)
    \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
    while \([H \mid T]\) is not a goal path
        SuccList \(\leftarrow\) successors of \(H\)
            ONodes \(\leftarrow\) list of \(S \in\) SuccList with \(\operatorname{IsPath}([S, H \mid T])\)
            NewPaths \(\leftarrow\) ExtendPath \((\) ONodes, \([H \mid T])\)
        do \(\{\) OpenPaths \(\leftarrow\) NewPaths + TailOpenPaths
            if OpenPaths = []
                then return (failure)
            \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
    Path \(\leftarrow \operatorname{REVERSE}([H \mid T])\)
    output (Path)
```

```
:- use_module(links).
:- use_module(searchinfo).
depth_first(Start,G_Pred,C_Pred,PathFound) :-
    dfs_loop([[Start]],G_Pred,C_Pred,PathFoundRev),
    reverse(PathFoundRev,PathFound).
dfs_loop([Path|_],G_Pred,_,Path) :- call(G_Pred,Path).
dfs_loop([[CurrNode|T]|Others],G_Pred,C_Pred,PathFound) :-
    successors(C_Pred,CurrNode, SuccNodes),
    findall(Node,(member(Node,SuccNodes),
            is_path([Node,CurrNode|T])),Nodes),
    extend_path(Nodes,[CurrNode|T],Paths),
    append(Paths,Others,NewOpenPaths),
    dfs_loop(NewOpenPaths,G_Pred,C_Pred,PathFound).
% auxiliary predicates ...
successors(C_Pred,Node,SuccNodes) :-
    findall(Successor,call(C_Pred,Node,Successor),SuccNodes)
extend_path([],_, []).
extend_path([Node|Nodes],Path,[[Node|Path]|Extended]) :-
    extend_path(Nodes,Path,Extended).
```

Figure 2.15: The File df4.pl - Depth First with Path Checking

```
:- module(info,[goal_path/1, is_path/1]).
goal_path([g|_]).
is_path([H|T]) :- not(member(H,T)).
```

Figure 2.16: The File searchinfo.pl

```
    - consult(df4).
% links compiled into edges 0.05 sec, 1,900 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% df4 compiled 0.05 sec, 4,944 bytes
Yes
?- depth_first(s,goal_path,link,Path).
Path = [s, a, b, e, f, g] ;
Path = [s, a, d, e, f, g] ;
Path = [s, d, e, f, g] ;
Path = [s, d, a, b, e, f, g] ;
No
```

Figure 2.17: Interactive Session for depth_first/4 - Path Checking

- The while loop in Algorithm 2.3.4 is implemented by $d f s_{-} l o o p / 4$. It uses the predicate $i s _p a t h / 1$, an implementation of the procedure IsPath.

Download free eBooks at bookboon.com

Click on the ad to read more

Figure 2.18: A Network (see Exercise 2.4, p. 67)

This predicate is imported from searchinfo.pl (Fig. 2.16, p. 65) by the second use_module/1 directive in $\mathrm{df} 4 . \mathrm{pl}$. In the present version of $i s _p a t h / 1$, paths are defined to be lists with distinct entries.

- call/2 and call/3, are used (see p. 40) to invoke the imported predicates goal_path/1 and link/2 at run time.
- It is seen from Fig. 2.17 that on backtracking all paths to the goal node are found.

Exercise 2.4. A new network is shown in Fig. 2.18, p. 67.
(a) Augment the file links.pl to reflect the connectivity of the new network.
(b) Suppose we want to find all paths from s to g such that no edge is traversed more than once but we don't mind visiting nodes several times. Define a new version of is_path/1 in searchinfo.pl to this new specification.
(c) Run depth_first/4 to find all paths from s to g.

Exercise 2.5. Rewrite the definition of depth_first/4 in Fig. 2.15 using difference lists.
Hints. You should represent paths, as before, by ordinary lists and write the agenda in terms of difference lists. Modify accordingly the predicates $d f s_{-}$loop and extend_path. The latter should be invoked by a new version of depth_first/4, called depth_first_dl/4. You should confirm the advantage of using difference lists by a sample session. (The model solution is found in the file $\mathrm{df} . \mathrm{pl}$ along with the old version based on ordinary lists.)

2.4 Breadth First Search

Another blind search algorithm is Breadth First. It visits the nodes of the search tree level by level from left to right as indicated in Fig. 2.19. It always finds a shortest path to the goal node. Now the agenda is updated on a first-in-first-out (FIFO) basis, thus the successors of a node just expanded will be put to the end of the list of open nodes.

The definition of breadth_first/4 in Fig. 2.20, p. 69, is arrived at by minor modifications of the code in Fig. 2.15:

Figure 2.19: Breadth First

- Rename the loop predicate to bfs_loop,
- Change the order of the first two arguments in the append goal,
- Leave the definition of the auxiliary predicates unchanged.

The behaviour of breadth_first/4 is shown in Fig. 2.21. The same paths are found as before, albeit in a different order.

Exercise 2.6. Rewrite the definition of breadth_first/4 in Fig. 2.20 using difference lists. Compare the performance of your solution with that of the old version.

Hints. You may take the model solution of Exercise 2.5, p. 175, or your own solution, and make the necessary changes: rename the loop predicate; modify the updating of the agenda (now represented as a difference list); and, use extend_path_dl/3 as defined in the solution of Exercise 2.5. For later reference, the new version should be placed in the same file as the earlier, list based version (i.e. bf.pl).

2.5 Bounded Depth First Search

Analysing Depth First and Breadth First will show that (e.g. [29]), on average, to find a goal node,

- Depth First needs less computer memory than Breadth First,
- The time requirement of Breadth First is asymptotically comparable to that of Depth First, and,

```
:- use_module(links).
:- use_module(searchinfo).
breadth_first(Start,G_Pred,C_Pred,PathFound) :-
    bfs_loop([[Start]], G_Pred,C_Pred,PathFoundRev),
    reverse(PathFoundRev, PathFound).
bfs_loop([Path|_],G_Pred,_,Path) :- call(G_Pred,Path).
bfs_loop([[CurrNode|T]|Others],G_Pred,C_Pred,PathFound) :-
    successors (C.Pred, CurrNode, SuccNodes),
    findall (Node, (member (Node, SuccNodes),
            is_path ([Node, CurrNode|T])), Nodes)
    extend_path(Nodes, [CurrNode|T],Paths), Modified Goal
    append (Others, Paths, NewOpenPaths),
    bfs_loop(NewOpenPaths,G_Pred,C_Pred,PathFound).
        (see Fig. 2.15,
    p. 65)
\% auxiliary predicates ...
    \(\} \longleftarrow\) Copy from Fig. 2.15, p. 65
```

Figure 2.20: The File bf .pl - Breadth First with Path Checking

```
consult(bf).
% links compiled into edges 0.00 sec, 1,900 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% bf compiled 0.05 sec, 4,948 bytes
Yes
?- breadth_first(s,goal_path,link,Path).
Path = [s, d, e, f, g] ;
Path = [s, a, b, e, f, g] ;
Path = [s, a, d, e, f, g] ;
Path = [s, d, a, b, e, f, g] ;
No
```

Figure 2.21: Interactive Session for breadth_first/4

- Breadth First always finds the shortest path to the goal node (if there is one) whereas (for infinite search trees) Depth First may fail to find a goal node even if one exists

Bounded Depth First search, shown in Algorithm 2.5.1, p. 71, combines the idea of the two search algorithms: it will explore the search tree up to a specified depth (the horizon) by Depth First. Bounded Depth First is also the basis for the more sophisticated Iterative Deepening, to be discussed in the next section.


```
Algorithm 2.5.1: Bounded_DF(StartNode, G_Pred, C_Pred,
    Horizon)
comment: Bounded Depth First Search.
    Procedures are assumed available for
            - Testing whether a path is a goal path by using
                the procedure in G_Pred;
- Finding successors of a node by using the connectivity procedure in C_Pred.
procedure ISPATH(list)
    comment: Returns a Boolean value.
                Is application specific.
\(\vdots\)
main
    RootNode \(\leftarrow\) StartNode
    OpenPaths \(\leftarrow[[\) RootNode \(]]\)
    \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
    ListLength \(\leftarrow\) Length \(([H \mid T])\)
    PathLength \(\leftarrow\) ListLength -1
    while \([H \mid T]\) is not a goal path
            if PathLength \(<\) Horizon
                then \(\left\{\begin{array}{c}\text { SuccList } \leftarrow \text { successors of } H \\ \text { ONodes } \leftarrow \text { list of } S \in \text { SuccList with } \\ \operatorname{IsPATH}([S, H \mid T])\end{array}\right.\)
                NewPaths \(\leftarrow\) ExtendPath \((\) ONodes, \([H \mid T])\)
            else \(\{\) NewPaths \(\leftarrow[]\)
        do
            OpenPaths \(\leftarrow\) NewPaths + TailOpenPaths
            if OpenPaths = []
            then return (failure)
            \([[H \mid T] \mid\) TailOpenPaths \(] \leftarrow\) OpenPaths
            ListLength \(\leftarrow \operatorname{LENGTH}([H \mid T])\)
            PathLength \(\leftarrow\) ListLength - 1
Path \(\leftarrow \operatorname{Reverse}([H \mid T])\)
output (Path)
```

Exercise 2.7. In the query below, the predicate bounded_df/5 is used to search the tree in Fig. 2.5 up to level 5 for the goal node g.

```
?- bounded_df(s,goal_path,link,5,PathFound).
PathFound = [s, a, b, e, f, g] ;
PathFound = [s, a, d, e, f, g] ;
PathFound = [s, d, e, f, g] ;
```

```
:- module(bounded_depth_first,[bounded_df/5]). \({ }^{7}\)
:- use_module(links).
:- use_module(searchinfo).
bounded_df(Start, G_Pred, C_Pred, Horizon, PathFound) :-
    b_dfs_loop([[Start]], G_Pred,C_Pred, Horizon, PathFoundRev),
    reverse(PathFoundRev, PathFound).
\(\ldots \quad\} \longleftarrow \begin{aligned} & \text { Loop Predicate } b_{-} d f s_{-} l o o p / 5 \\ & \text { to be defined here }\end{aligned}\)
\% auxiliary predicates ...
\(\} \longleftarrow\) Copy from Fig. 2.15, p. 65
```

Figure 2.22: The File bdf.pl - Bounded Depth First (for Exercise 2.7)

No

Based on Algorithm 2.5.1, define bounded_df/5 by completing the missing parts in Fig. 2.22.
Hint. The definition of $b_{-} d f s_{-} l o o p / 5$ may be obtained from that of $d f s_{-} l o o p / 4$ in Fig. 2.15 by augmenting the latter with a new argument for the horizon.

2.6 Iterative Deepening

Bounded Depth First search is invoked here repeatedly with a successively larger horizon. This may be performed until a path to the goal node is found or until some CPU time limit is exceeded. We choose the former with unit increment. An implementation and a test run are shown in Figs. 2.23 and 2.24, respectively. ${ }^{8}$ Iterative Deepening may seem computationally wasteful as at any one stage the previous stage is recomputed but it can be shown that it is asymptotically optimal (eg [29]).

Exercise 2.8. The interactive session in Fig. 2.24 illustrates that, on backtracking, Iterative Deepening will rediscover the goal paths found earlier. Modify our implementation of Iterative Deepening such that this does not happen, i.e. paths found earlier for a smaller horizon should be ignored.

Hint. Fig. 2.25 shows a sample session with this modified version. The previous horizon is recorded in the database by means of the predicate lastdepth/1. Goal paths shorter than the value herein are ignored. To implement this, you will have to modify the first clause of $b_{-} d f s_{-} l o o p / 5$ in bdf.pl. You will also have to arrange for the updating of lastdepth/1 in the database.

Exercise 2.9. Yet another, and perhaps the most usual form of Iterative Deepening will find the (leftmost) goal node at the shallowest depth (presuming that one exists) and then stop searching. For our example, such a version will respond as follows,
?- iterative_deepening(s,goal_path, link, PathFound).

[^4]```
:- use_module(bdf).
iterative_deepening(Start,G_Pred,C_Pred,PathFound) :-
 iterative_deepening_aux(1,Start,G_Pred,C_Pred,PathFound).
iterative_deepening_aux(Depth,Start,G_Pred, C_Pred,PathFound) :-
 bounded_df(Start,G_Pred,C_Pred,Depth,PathFound).
iterative_deepening_aux(Depth,Start,G_Pred, C_Pred,PathFound) :-
 NewDepth is Depth + 1,
 iterative_deepening_aux(NewDepth,Start,G_Pred,C_Pred,PathFound).
```

Figure 2.23: The File iterd.pl - Iterative Deepening

```
PathFound = [s, d, e, f, g] ;
```

No

## Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

## Get Help Now

Go to www.helpmyassignment.co.uk for more info



```
?- consult(iterd)
% links compiled into edges 0.06 sec, 1,856 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% bdf compiled into bounded_depth_first 0.06 sec, 5,784 bytes
% iterd compiled 0.06 sec, 7,664 bytes
Yes
?- iterative_deepening(s,goal_path,link,PathFound)
PathFound = [s, d, e, f, g] ; }
PathFound = [s, a, b, e, f, g] ;
PathFound = [s, a, d, e, f, g] ;
PathFound = [s, d, e, f, g] ;
PathFound = [s, a, b, e, f, g] ;
PathFound = [s, a, d, e, f, g] ;
PathFound = [s, d, e, f, g] ;
PathFound = [s, d, a, b, e, f, g] ;
PathFound = [s, a, b, e, f, g] ;
...
```

Figure 2.24: Sample Session - Iterative Deepening

Implement this version of Iterative Deepening.

Finally, notice that, for finite search trees, Iterative Deepening has an unpleasant feature not found with the other blind search algorithms: if there is no goal node, Iterative Deepening won't terminate. ${ }^{9}$ This will cause problems in applications where a sequence of potential start nodes is supplied to the algorithm some of which won't lead to a goal node. (An example of this will be seen in Sect. 2.8).

### 2.7 The Module blindsearches

The implementations of the algorithms from the preceding sections have been put together in blindsearches.pl to form the module blindsearches. This allows us to create an implementation of the network search problem anew which then may serve as a template for other uses of blindsearches. The top level is netsearch. pl, Fig. 2.26, p. 75. The following shows an interactive session using search/0 from netsearch.pl.

```
?- consult(netsearch).
% links compiled into edges 0.00 sec, 1,900 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% blindsearches compiled into blindsearches 0.06 sec, 7,284 bytes
% netsearch compiled 0.06 sec, 14,312 bytes
?- search.
Enter start state (a/b/c/d/e/f/s)... s.
Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... bdf.
```

[^5]```
?- iterative_deepening(s,goal_path,link,PathFound)
PathFound = [s, d, e, f, g] ;
PathFound = [s, a, b, e, f, g] ;
PathFound = [s, a, d, e, f, g] ; 
PathFound = [s, d, a, b, e, f, g] ; } «
Ctrl}+
Action (h for help) ? abort
% Execution Aborted
?- lastdepth(D). 
D = 396 } % < |
Yes
```

Figure 2.25: Sample Session - Modified Iterative Deepening (for Exercise 2.8)

```
:- use_module(links).
:- use_module(searchinfo).
:- use_module(blindsearches).
search :-
    G = goal_path,
    get_start_state(S),
    select_algorithm(A),
    (A = bdf, get_horizon(Horizon); true), !,
    ((A = df, depth_first(S,G,link,PathFound));
        (A = df_dl, depth_first_dl(S,G,link,PathFound));
        (A = bf, breadth_first(S,G,link,PathFound));
        (A = bf_dl, breadth_first_dl(S,G,link,PathFound));
        (A = bdf, bounded_df(S,G,link,Horizon,PathFound));
        (A = id, iterative_deepening(S,G,link,PathFound))),
    show_nodes(PathFound),
    terminate.
% missing predicates (shaded) to be defined here ...
...
```

Figure 2.26: The File netsearch.pl (for Exercise 2.10)

Enter horizon... 5.
Nodes visited: s \rightarrow a \rightarrow b \rightarrow e $->$ f $->$ g
Stop search? (y/n) n.
Nodes visited: s -> a -> d -> e -> f -> g
Stop search? (y/n) y.
Yes
Exercise 2.10. Define the missing predicates (shaded) in Fig. 2.26. (You will have to use the built-in predicate read/1 for reading a term. Notice that the input from the keyboard always finishes with a dot (.) as shown above.)

2.8 Application: A Loop Puzzle

2.8.1 The Puzzle

This is a more substantial example showing that some problems can be formulated as a network search problem thereby making them amenable to a solution by the algorithms described earlier. The idea of the puzzle considered here originates from the puzzle magazine [17].

Download free eBooks at bookboon.com

We are given a rectangular board some positions of which are marked by circles (0) and sharps (\#) as shown in the upper half of Fig. 2.27, p. 78. The task is to place a closed loop of a rope onto the board such that the following conditions are met:

- The rope connects contiguous positions horizontally or vertically but not diagonally. It does not selfintersect.
- Each position is visited by the rope at most once. (This follows, of course, also from the fact that the rope is not self-intersecting.) In particular, there may well be positions which are not visited at all.
- Each marked position is visited exactly once.
- Adjacent marks on the rope of the like kind (i.e. both circles or both sharps) are connected by a straight piece of rope.
- Adjacent marks on the rope which are different (i.e. if one is a circle and the other is a sharp) are connected by a piece of rope which takes a right angle turn.

A puzzle from [17] is solved in Fig. 2.27 by the model implementation. It is run interactively and carries out the following steps in turn:

1. It displays a sketch of the board and the arrangement of the marks (circles and sharps).
2. It gives the user a choice between the various search algorithms.
3. It tries to solve the problem and, if a solution exists, it gives a pictorial display of the loop's position on the board. ${ }^{10}$ If no solution is found, loop/0 should fail. Furthermore, if there are several solutions, the implementation should find all of them.

2.8.2 A 'Hand-Knit' Solution

The core question is obviously how the present problem translates to a network search problem. (For the time being, we won't be concerned with the generation of the interface and display of the loop found as they are relatively straightforward, though laborious.)

As a first step, we want to illustrate by way of the specific case from Sect. 2.8.1 how the problem can be solved by directly creating (i.e. defining by facts) the predicates needed by the module blindsearches. The information concerning the specifics of the puzzle is defined in the file loop_puzzle1.pl shown in Fig. 2.28. Before defining the connectivity predicate which, as usual, will be called $l i n k / 2$, we will have to find a suitable representation for the system's states. The rope will be pieced together segment by segment, i.e. by progressing from one mark to the next. It seems therefore appropriate to identify the states of the system (i.e. the nodes of the corresponding network) with rope segments connecting marked positions.

A list representation will be used for rope segments and progression in the list will be from right to left. Thus, for example, movement from a circle at position $\operatorname{pos}(1,4)$ to a sharp at position pos $(2,2)$ is indicated by either of the following two segments.

$$
\begin{equation*}
[\operatorname{pos}(2,2), \operatorname{pos}(2,3), \operatorname{pos}(2,4)] \tag{2.1}
\end{equation*}
$$

[^6]

Figure 2.27: Sample Session - The Loop Puzzle

```
:- use_module(loops). \(\} \longleftarrow\) Top level module is in loops.pl
\(\operatorname{size}(6,6) . \quad\) Number of rows
Number of columns
circle(pos(1,4)). circle(pos(3,5)).
circle(pos \((4,2))\). circle(pos \((6,6))\).
\(\operatorname{sharp}(\operatorname{pos}(1,6)) . \operatorname{sharp}(\operatorname{pos}(2,1)) . \operatorname{sharp}(\operatorname{pos}(2,2))\).
\(\operatorname{sharp}(\operatorname{pos}(4,1)) . \operatorname{sharp}(\operatorname{pos}(5,5))\).
```

Figure 2.28: The File loop_puzzle1.pl
and

$$
\begin{equation*}
[\operatorname{pos}(2,2), \operatorname{pos}(1,2), \operatorname{pos}(1,3)] \tag{2.2}
\end{equation*}
$$

These segments are indicated by solid arrows in Fig. 2.29. Notice that the position at which the segment arrives, here pos $(2,2)$, features as the head of its list representation whereas the board position from which the segment originates is omitted from the list.

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons"
Jane, Chinese architect

Click to hear me talking before and after my unique course download

Figure 2.29: Constructing a Solution of the Loop Puzzle
(This will enable us simply to string together the final rope from its segments without being concerned with duplication of some positions.) The marked positions connected by a segment will be adjacent on the rope of which the segment is part of. We require therefore that the only marked position be the head of the segment's list representation. Thus, for example,

$$
[\operatorname{pos}(4,1), \operatorname{pos}(3,1), \operatorname{pos}(2,1), \operatorname{pos}(1,1), \operatorname{pos}(1,2), \operatorname{pos}(1,3)]
$$

is not a segment as it meets the marked position $\operatorname{pos}(2,1)$ 'on its way' from pos $(1,4)$ to $\operatorname{pos}(4,1)$. We now take the segment

$$
\begin{equation*}
[\operatorname{pos}(1,4), \operatorname{pos}(2,4), \operatorname{pos}(3,4), \operatorname{pos}(4,4), \operatorname{pos}(5,4)] \tag{2.3}
\end{equation*}
$$

which is deemed to stretch from the sharp at $\operatorname{pos}(5,5)$ to the circle at pos $(1,4)$. This is indicated by the dashed arrow in Fig. 2.29. (The other potential segment connecting the same positions as the one in (2.3) must be ruled out since it is blocked by the mark (circle) in $\operatorname{pos}(3,5)$.) To indicate that the segment in (2.2) is linked to that in (2.3), we declare in the database the following fact:

$$
\operatorname{link}([\operatorname{pos}(1,4), \operatorname{pos}(2,4), \operatorname{pos}(3,4), \operatorname{pos}(4,4), \operatorname{pos}(5,4)],[\operatorname{pos}(2,2), \operatorname{pos}(1,2), \operatorname{pos}(1,3)]) .
$$

Notice that the order of the arguments in $l i n k / 2$ matters: according to our interpretation, the segment in the first argument is visited first, followed by the segment in the second argument. The corresponding fact linking the segments in (2.3) and (2.1) does not hold if self-intersecting loops are excluded. Let us assume, however, that at this stage we do not care whether a rope is self-intersecting since this will be attended to later when we define the predicate is_path/1. Then, a more concise and more general form of the above fact is given by
link([pos(1,4)|_], [pos(2,2),pos(1,2),pos(1,3)]).
(This simply states that the segment $[\operatorname{pos}(2,2), \operatorname{pos}(1,2), \operatorname{pos}(1,3)]$ will join any segment pointing at pos $(1,4)$.$) There are three other segments also originating from the circle in pos (1,4)$; they give rise to the following fact each.

```
\(\operatorname{link}\left(\left[\operatorname{pos}(1,4) \mid \_\right],[\operatorname{pos}(2,1), \operatorname{pos}(1,1), \operatorname{pos}(1,2), \operatorname{pos}(1,3)]\right)\).
link([pos \((1,4) \mid\) ],\(~[p o s(2,2), p o s(2,3), p o s(2,4)])\).
\(\operatorname{link}\left(\left[\left.\operatorname{pos}(1,4)\right|_{\_}\right],[\operatorname{pos}(5,5), \operatorname{pos}(5,4), \operatorname{pos}(4,4), \operatorname{pos}(3,4), \operatorname{pos}(2,4)]\right)\).
```

```
:- use_module(blindsearches).
\(\ldots \quad\)... Define link/2 here (see Exercise 2.11, p. 81)
start_state \(([\operatorname{pos}(2,1), \operatorname{pos}(1,1), \operatorname{pos}(1,2), \operatorname{pos}(1,3)])\).
goal_path \(\left.([\mathrm{H} \mid \mathrm{T}]):-\begin{array}{l}\operatorname{length}([\mathrm{H} \mid \mathrm{T}], 9), \\ \operatorname{last}(\mathrm{E}, \mathrm{T}),\end{array}\right\} \longleftarrow \begin{aligned} & \text { The goal path } \\ & \text { has } 9 \text { segments }\end{aligned}\)
    link(H,E).
is_path([H|T]) :- not(prohibit([H|T])).
prohibit([S|[H|]]) :- not(disjoint(S,H)).
prohibit([S|[_|T]]) :- prohibit([S|T]).
disjoint([],_).
disjoint([H|T],S) :- not(member(H,S)), disjoint(T,S).
```

Figure 2.30: The File hand_knit.pl

In a similar fashion, the segments originating from the circle in $\operatorname{pos}(3,5)$ give rise to the facts

```
link([pos(3,5)|_], [pos(1,6),pos(2,6),pos(3,6)]).
link([pos(3,5)|_], [pos(1,6),pos(1,5),pos(2,5)]).
link([pos (3,5)|_], [pos (2,1), pos (3,1), pos (3,2),pos (3,3),pos(3,4)]).
link([pos (3,5)|_], [pos (2,2),pos (3,2), pos (3,3), pos (3,4)]).
link([pos (3,5)l_], [pos (2,2),pos(2,3),pos (2,4),pos (2,5)]).
link([pos(3,5)|_], [pos(4,1), pos (3,1),pos (3,2),pos (3,3),pos(3,4)]).
```

Exercise 2.11. Complete the definition of $l i n k / 2$ in this fashion. There will be 37 facts in total forming 9 groups, each group corresponding to a marked position. (You will find the solution of this exercise in the file hand_knit.pl.)

The definition of $l i n k / 2$ and those of some other predicates ${ }^{11}$ are in the file hand_knit.pl, partially shown in Fig. 2.30. It is also seen from hand_knit.pl that one of the segments has been chosen as a start state by visual inspection of Fig. 2.29. ${ }^{12}$ We are now in a position to find a solution interactively. After consulting hand_knit.pl, we invoke depth_first/4 as follows.

```
?- start_state(_S), depth_first(_S,goal_path,link,_PathFound),
    write_term(_PathFound, []).
[[pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)],
    [pos(4, 1), pos(3, 1)],
    [pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1)],
    [pos(5, 5), pos(5, 6)],
```

[^7]```
\([\operatorname{pos}(4,2), \operatorname{pos}(5,2), \operatorname{pos}(5,3), \operatorname{pos}(5,4)]\),
\([\operatorname{pos}(1,6), \operatorname{pos}(2,6), \operatorname{pos}(3,6), \operatorname{pos}(4,6), \operatorname{pos}(4,5), \operatorname{pos}(4,4), \operatorname{pos}(4,3)]\),
\([\operatorname{pos}(3,5), \operatorname{pos}(2,5), \operatorname{pos}(1,5)]\),
\([\operatorname{pos}(2,2), \operatorname{pos}(3,2), \operatorname{pos}(3,3), \operatorname{pos}(3,4)]\),
\([\operatorname{pos}(1,4), \operatorname{pos}(2,4), \operatorname{pos}(2,3)]]\)
```

A list comprising 9 path segments has been returned. It is to be read from left to right but the list representations of the segments are read from right to left. It is perhaps easier to interpret the result if we subsequently reverse this list and then flatten it. The list thus produced will be a right-to-left display of the positions visited.
?- start_state(_S), depth_first(_S, goal_path, link, _PathFound), reverse(_PathFound,_R), flatten (_R,_F), write_term(_F, []). $[\operatorname{pos}(1,4), \operatorname{pos}(2,4), \operatorname{pos}(2,3), \operatorname{pos}(2,2), \operatorname{pos}(3,2), \operatorname{pos}(3,3)$, $\operatorname{pos}(3,4), \operatorname{pos}(3,5), \operatorname{pos}(2,5), \operatorname{pos}(1,5), \operatorname{pos}(1,6), \operatorname{pos}(2,6)$, $\operatorname{pos}(3,6), \operatorname{pos}(4,6), \operatorname{pos}(4,5), \operatorname{pos}(4,4), \operatorname{pos}(4,3), \operatorname{pos}(4,2)$, $\operatorname{pos}(5,2), \operatorname{pos}(5,3), \operatorname{pos}(5,4), \operatorname{pos}(5,5), \operatorname{pos}(5,6), \operatorname{pos}(6,6)$, $\operatorname{pos}(6,5), \operatorname{pos}(6,4), \operatorname{pos}(6,3), \operatorname{pos}(6,2), \operatorname{pos}(6,1), \operatorname{pos}(5,1)$, $\operatorname{pos}(4,1), \operatorname{pos}(3,1), \operatorname{pos}(2,1), \operatorname{pos}(1,1), \operatorname{pos}(1,2), \operatorname{pos}(1,3)]$


Download free eBooks at bookboon.com

```
:- use_module(blindsearches).
:- use_module(automated).
size(6,6).
circle(pos(1,4)). circle(pos(3,5)).
circle(pos(4,2)). circle(pos(6,6)).
sharp(pos(1,6)). sharp(pos(2,1)).
sharp(pos(2,2)). sharp(pos(4,1)). sharp(pos(5,5)).
```

Figure 2.31: The File loop_puzzle1a.pl

The path thus obtained is seen to be the one shown in Fig. 2.27. ${ }^{13}$

### 2.8.3 Project: Automating the Solution Process

In the 'hand-knit' solution from the previous section, the information specific to the puzzle was conveyed to Prolog via the predicate link/2, defined in hand_knit.pl by Prolog facts which were arrived at laboriously by visual inspection of loop_puzzle1.pl. This arrangement, though unsatisfactory, has been useful in showing that this type of puzzle can be solved as a network search problem. We are aiming for a more flexible and automated implementation, however, which will solve any problem of this type by combining the problemspecific information from a file like loop_puzzle1.pl with a rule-based and not problem-dependent definition of link/2. ${ }^{14}$

You will be asked to find a rule-based definition of $l i n k / 2$ in Exercise 2.12 below. The suggested file structure is as follows. The information concerning this particular puzzle should be recorded in the file loop_puzzle1a.pl ${ }^{15}$ as shown in Fig 2.31, p. 83. All the other predicates pertinent to this type of puzzle should be defined in the file automated.pl as outlined in Fig. 2.32, p. 84.

Exercise 2.12. To get a semi-automated solution ${ }^{16}$ of the loop puzzle as indicated by the interactive session in Fig. 2.35, p. 88, augment the file hand_knit.pl by defining link/2 by rules. The augmented file will be the first version of automated.pl. Below you will find some guidance on the implementation of link/2.

## Implementing link/2

At variance with the fact-based version of $l i n k / 2$, now linking intersecting segments will be disallowed. Thus, for example, whereas

[^8]

Figure 2.32: The File automated.pl


Download free eBooks at bookboon.com

link $([\operatorname{pos}(5,5), \operatorname{pos}(4,5), \operatorname{pos}(4,4), \operatorname{pos}(4,3)]$,
$[\operatorname{pos}(1,4), \operatorname{pos}(2,4), \operatorname{pos}(3,4), \operatorname{pos}(4,4), \operatorname{pos}(5,4)])$.
follows from the definition of $l i n k / 2$ in hand_knit. pl, it cannot be inferred by our rule-based version of $l i n k / 2$ in automated.pl:

```
?- link([pos(5,5),pos(4,5),pos(4,4),pos(4,3)],S).
S = [pos(4, 2), pos(5, 2), pos(5, 3), pos(5, 4)] ;
S = [pos(6, 6), pos(5, 6)] ;
S = [pos(6, 6), pos(6, 5)] ;
No
```

Does it matter if this additional condition is imposed? No, the final result won't be affected as paths containing self-intersecting linked segments are themselves self-intersecting and will therefore be disallowed by is_path/1. However, whereas $l i n k / 2$ was previously defined by a relatively small number of facts, the resulting network is more complex. It will be seen that the imposed condition is easily incorporated in the definition of $l i n k / 2$ and, as indicated above, it should give rise to a simpler network, i.e. to a one with a lesser number of connections. (You will be asked to compare the two networks as part of Exercise 2.14, p. 87.)

The dashed arrows in Fig. 2.33 stand for segments connected to $[p o s(5,5)$, pos $(4,5), \operatorname{pos}(4,4), \operatorname{pos}(4,3)]$ which itself is shown as a continuous arrow. We require furthermore that


Figure 2.33: Constructing a Loop

- link/2 should fail if the first argument is not unified with a valid segment:
?- link $([\operatorname{pos}(5,3), \operatorname{pos}(6,3), \operatorname{pos}(6,4), \operatorname{pos}(6,5)], S)$.
No
- link/2 should also fail if the arguments are unified with valid segments, that, however, are not linked:
?- $\operatorname{link}([\operatorname{pos}(6,6), \operatorname{pos}(5,6)],[\operatorname{pos}(6,6), \operatorname{pos}(6,5)])$. No
- link/2 should succeed if the arguments are unified with linked segments:
?- $\operatorname{link}([\operatorname{pos}(2,1), \operatorname{pos}(3,1)],[\operatorname{pos}(2,2)])$. Yes

We now want to indicate how $l i n k / 2$ should be defined. Let us assume that two marked positions of the like kind should be linked. This will be accomplished by the clause

```
link([Pos1|T1],[Pos2|T2]) :- ((circle(Pos1), circle(Pos2)); (sharp(Pos1), sharp(Pos2))),
 straight(Pos1,[Pos2|T2],Pos2),
 not((member(Pos,T2),(circle(Pos);sharp(Pos)))),
 disjoint([Pos1|T1],[Pos2|T2]).
```

where the auxiliary predicate straight $(+P 1, ? S,+P 2)$ connects any two positions $P 1$ and $P 2$ sharing the same row or column; details of what is required may be gleaned from the query below.

```
?- auto:straight(pos (3,4),S,pos(3,8)).
S = [pos(3, 8), pos(3, 7), pos(3, 6), pos(3, 5)]
?- auto:straight(pos (8,3),S,pos(4,3)).
S = [pos(4, 3), pos(5, 3), pos(6, 3), pos(7, 3)]
```

(We use the prefix auto in the above query as straight/3 is not visible from outside the module auto.)
You are recommended to use the built-in predicates bagof $/ 3$, between $/ 3$ and reverse $/ 2$ in your definition of straight/3.

The corresponding clause of $l i n k / 2$ for linking marked positions of an unlike kind uses the auxiliary predicate turn ( $+P 1, ? R,+P 2$ ) where the positions P1 and P2 (not sharing the same row or column) are linked by the list $R$ taking a right angle turn; for example,

```
?- consult(loop_puzzle1a).
?- maybe_start_state(_S), depth_first(_S,goal_path,link,_PathFound),
 reverse(_PathFound,_R), flatten(_R,_F), write_term(_F, []).
[pos(1, 4), ..., pos(1, 3)]
Yes
```

Figure 2.34: Running the Automated Implementation of the Loop Puzzle

```
?- auto:turn(pos (6,4),R,pos(4,1)).
R = [pos(4, 1), pos(5, 1), pos(6, 1), pos(6, 2), pos(6, 3)]
?- auto:turn(pos}(8,3),R,\operatorname{pos}(4,2)).\mp@subsup{}{}{17
R = [pos(4, 2), pos(5, 2), pos(6, 2), pos(7, 2), pos(8, 2)]
```

To define turn/3, use straight/3 and append/3.

## Fully Automated Implementation

Exercise 2.13. To get an automated solution of the loop puzzle as indicated by the interactive session in Fig. 2.34, now augment the file automated.pl as follows.

- Define the predicate maybe_start_state/1, and make it a visible predicate by augmenting the module directive as indicated in Fig. 2.32. It should return on backtracking all segments emanating from an arbitrary but fixed marked position. As explained in footnote 12 , p. 81 , one of the segments returned by maybe_start_state/1 will form part of the loop we are looking for.
- Define the predicate number_of_marks/1 and modify the definition of goal_path/1 as indicated in Fig. 2.32.

Exercise 2.14. (This exercise explores the idea mentioned in footnote 14, p. 83.) The 'hand-knit' solution outlined in Sect. 2.8.2 involved a manual implementation of link/2 by defining it by Prolog facts. These facts were, of course, specific to the puzzle to be solved. Having now defined link/2 by rules not referring to the particulars of the puzzle at hand, we have been able to automate the solution process. An alternative closer to the original idea would be automatically to define in the database $l i n k / 2$ by the facts applicable to the particular problem. Use link/2 to define by facts an equivalent new link predicate and use it to solve the loop puzzle. Determine the number of nodes and the number of directed edges of the corresponding network. Determine these quantities also for the network associated with the 'hand-knit' solution (Sect. 2.8.2) to confirm that the latter is indeed more complex.

[^9]```
consult(loop_puzzle1a).
% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes
% automated compiled into auto 0.00 sec, 5,752 bytes
% loop_puzzle1a compiled 0.05 sec, 14,576 bytes
Yes
l?- consult(user).
|: start_state([pos(2,1),pos(1,1),pos(1,2),pos(1,3)]). }\leftarrow of start_state/1
|:Ctrl +D
% user compiled 34.11 sec, 388 bytes
Yes
?- start_state(_S), depth_first(_S,goal_path,link,_PathFound), reverse(_PathFound,_R), flatten(_R,_F),
    write_term(_F,[]).
[pos(1, 4), pos(2, 4), pos(2, 3), pos(2, 2), pos(3, 2), pos(3, 3), pos(3, 4), pos(3, 5), pos(2, 5), pos(1, 5),
pos(1, 6), pos(2, 6), pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3), pos(4, 2), pos(5, 2), pos(5, 3),
pos(5, 4), pos(5, 5), pos(5, 6), pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1),
pos(4, 1), pos(3, 1), pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)]
Yes
```

Figure 2.35: Semi-Automated Solution of the Loop Puzzle

Download free eBooks at bookboon.com

Figure 2.36: Session for Displaying the Board

2.8.4 Project: Displaying the Board

Exercise 2.15. To display the marks' position on the board, define

- make_small_board(+Row,+Col,+Circles,+Sharps,-Board) for unifying Board with the list of lines to be displayed where each line itself is represented as a list of one-character atoms; and,
- disp_board(+Board) for displaying Board on the terminal.

Fig. 2.36 shows how these predicates should behave. (The model solution is in small_board.pl.)
Exercise 2.16. To display a path on the board, define

- make_board (+ Row, + Col, + Path, -Board) for creating a list-of-lists representation of Board, and,
- show_board (+Board) for displaying Board on the terminal.

Path is unified with a list of contiguous co-ordinate entries of the form pos (..,...). Fig. 2.37 illustrates the point for a 2×5 board. (The model solution is in board.pl.)

Figure 2.37: Illustrating Exercise 2.16

Download free eBooks at bookboon.com

Figure 2.38: Illustrating Exercise 2.17

Exercise 2.17. Finally, for putting circles and sharps on the board, a predicate for writing a given character to specified positions on the board will be useful. This will be accomplished by change_board/4 as illustrated in Fig. 2.38. (In the example we mark corner positions of the path with the character 'c'.) Define change_board/4. (The model solution is in board.pl.)

2.8.5 Complete Implementation

All the building blocks for solving the puzzle and displaying the loop found are now in place. In fact, this can be done interactively as shown in Fig. 2.39.

Exercise 2.18. It is very tedious to solve the loop puzzle interactively as shown in Fig. 2.39. Combine now the predicates from above to create a more user-friendly implementation which can be run as shown in Fig. 2.27, p. 78. You may model your implementation of the dialogue on that in netsearch.pl (see Fig. 2.26, p. 75). (For the model solution, see loops.pl.)

2.8.6 Full Board Coverage

Exercise 2.19. Suppose now that the specification is made somewhat stricter. In addition to the initial requirements we now also want every small square to be visited by the loop. You should modify your implementation to include this new feature.
Notes.

1. Whereas the earlier puzzle has a unique solution which happens to visit every position (even if we don't insist on this), the case shown in Fig. 2.40 (with the data in loop_puzzle2.pl) is more complex and will admit solutions of both kinds (Figs. 2.41 and 2.42). Use loop_puzzle2.pl for testing your solution.
```
?- consult([loop_puzzle1a, board]).
% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes
% automated compiled into auto 0.00 sec, 6,252 bytes
% loop_puzzle1a compiled 0.05 sec, 15,076 bytes
% board compiled into board 0.06 sec, 8,168 bytes
?- maybe_start_state(_Start),
    depth_first(_Start,goal_path,link,_PathFound),
    reverse(_PathFound,_Rev), flatten(_Rev,_F), last(_L,_F),
    size(_Row,_Col), make_board(_Row,_Col,[_L/_F],_BO),
    bagof(_C,circle(_C),_Cs), change_board('O',_Cs,_BO,_B1),
    bagof(_S,sharp(_S),_Ss), change_board('#',_Ss,_B1,_B2),
    show_board(_B2).
```



```
Yes
```

Figure 2.39: Solving the Puzzle Interactively. (See Exercise 2.18.)

Figure 2.40: Illustrating Exercise 2.19
2. You may find that due to stack overflow your Prolog implementation won't be able to solve this more complex puzzle by Breadth First because the agenda will become very large (Sect. 2.5).

2.8.7 Avoiding Multiple Solutions

This may be another desired feature of the implementation: Every loop satisfying the specifications should be displayed only once. There are two ways a solution may be discovered more than once.

1. As loops can be traversed in two directions, both versions will be found even though the display won't allow us to distinguish between them. To illustrate the point, let us consider the loop shown in Fig. 2.42. We take pos $(2,7)$ to be the seed position. Then the loop can be built up by starting with the segment

$$
[\operatorname{pos}(5,7), \operatorname{pos}(4,7), \operatorname{pos}(3,7)]
$$

bearing in mind that segments are read from right to left. Alternatively,

```
[pos(1,1), pos(2,1), pos(2,2), pos(2,3), pos(2,4), pos(2,5), pos(2,6)]
```

may also be taken as the starting segment emanating from the same seed. It starts the loop in the opposite direction. We won't be concerned here with duplication due to this cause; we simply accept that as far as this cause is concerned each solution of the puzzle will be displayed exactly twice.
2. The second cause for finding multiple instances of the same loop is elusive and it won't arise with every test case. The case shown in Fig. 2.42 is, however, one of those where this will occur. One of the segments emanating from the seed position $\operatorname{pos}(2,7)$ is $[\operatorname{pos}(1,6), \operatorname{pos}(1,7)]$, pointing to the sharp in pos $(1,6)$. The same segment can also be thought of, however, as emanating from the sharp in pos $(1,8)$. This is

Figure 2.41: Some positions not visited

Figure 2.42: All positions visited
yet another starting segment giving rise to the same loop. For this version of the loop, the last segment will be $[\operatorname{pos}(1,8), \operatorname{pos}(2,8)]$, pointing at the position where the loop was mistakenly deemed to have started from. Situations such as this will be avoided if we stipulate that the head of the last segment be identical to the seed position; an augmented definition of goal_path/1 to reflect this, is shown in (P-2.1).

Prolog Code P-2.1: Augmented definition of goal_path/1

```
goal_path([LastSegment/T]) :- number of marks(M),
    length([LastSegment/T],M),
    last(FirstSegment,T),
    link(LastSegment,FirstSegment),
    seed([SeedPosition]), % added goal
    LastSegment = [SeedPosition|_]. % added goal
```


2.8.8 Variants of the Loop Puzzle

A Loop with 'Kinks'

In this loop puzzle from [18], one symbol is used only, the circle (0) say, for marking some positions on a rectangular board. We are required to find a loop such that

Download free eBooks at bookboon.com

- Each board position should be visited by the loop exactly once.
- Pairs of marks lying adjacent on the loop should be connected by L-shaped segments (which may be referred to as kinks).

An example from [18] is solved by the model implementation in Fig. 2.43.
Exercise 2.20. Write a Prolog solution for the above loop puzzle. It may be assumed that not all four corner positions are marked. (This assumption will allow a start state (i.e. an initial loop segment) to be 'grown' from this empty corner.) It may also be assumed that top and bottom rows, and leftmost and rightmost columns all contain at least one mark.

You may retain the structure of the earlier implementation. Use the modules small_board and board as before for displaying the positions of the marks and that of the loop. The puzzle specific source files for the model solution are kinks.pl and kinks1.pl-kinks5.pl.

A 'Straight' Loop

This puzzle originates from [16]. As before, one symbol is used only for marking some positions on a rectangular board, the circle (0), say. We want to find a loop such that

- Each board position is visited by the loop exactly once.
- Marked positions are traversed without a right angle turn; hence the attribute straight.

An example from [16] is solved by the model implementation in Fig. 2.44.
Exercise 2.21. Write a Prolog implementation for solving the above loop puzzle.

Hints.

1. In the model solution, all viable loop segments of length three form the system states; they may be denoted, for instance, by a term state/3 with its arguments standing for three contiguous board positions. Given some state, the link/2 predicate will generate all its children as shown in the queries below for the puzzle in Fig. 2.44.
```
?- link(state(pos(3,3),pos(2,3),pos(2,4)),S).
S = state(pos(3, 2), pos(3, 3), pos(2, 3)) ;
S = state(pos(3, 4), pos(3, 3), pos(2, 3)) ;
S = state(pos(4, 3), pos(3, 3), pos(2, 3)) ;
No
?- link(state(pos(3,4),pos(3,3),pos(2,3)),S).
S = state(pos(3, 5), pos(3, 4), pos(3, 3)) ;
No
```

It is seen that linked segments overlap by one position and that the state/3 term can be thought of as a 'window' of size three progressing to the left. The second query above shows that the mark in pos $(3,4)$ is traversed by a straight segment.
2. Because of the straightness condition, there can't be any marks in the corners. We may therefore place the initial segment in the top left-hand corner.

The files straightloop.pl and straightloop1.pl-straightloop3.pl are the puzzle specific source for the model solution.

Figure 2.43: Solving the Loop Puzzle - Variant One

Figure 2.44: Solving the Loop Puzzle - Variant Two

3	4	$\boxed{5}$
8		2
7		2
7	1	6

Initial State

Goal State

Figure 2.45: An Eight Puzzle

2.9 Application: The Eight Puzzle

2.9.1 The Puzzle

This is a standard example in AI and it is used for assessing the performance of search algorithms [27].
There are eight tiles, numbered 1 to 8 , on a 3×3 board. The objective is to transform an initial tile arrangement into a given goal state; an example is shown in Fig. 2.45. In each transformation step, a new tile arrangement should be obtained by sliding a tile to the empty position.

The number of states of this puzzle is $9!=362,880$. However, the state space is known to fall into two distinct components the states of each of which are mutually reachable from within but not from the other component's states. Below we show another popular choice for the goal state, residing in the other component.

Alternative Goal State

Thus, if this latter arrangement is also admitted as a goal state, the puzzle will be solvable for any initial state.

2.9.2 Prolog Implementation

A sample run of the model implementation is shown in Fig. 2.46. The user may choose from eleven test cases; the first ten are from [15]. The test cases $1-10$ are in order of increasing difficulty and are solvable with the goal state in Fig. 2.45. The eleventh test case is solvable for the alternative goal state.

Test Case Number		1	2	3	4	5	6	7	8	9
10										
Goal Node at Depth		8	8	10	12	13	16	16	20	30
30										
CPU Seconds	bdf	0.0	0.2	0.5	2.3	3.6	2.9	17.7	144.4	-
	$b f$	0.3	0.5	3.0	43.6	99.6	1523	-	-	-
	id	0.3	0.4	1.2	5.2	8.2	34.2	40.8	556.0	-

Table 2.1: CPU Times (in Seconds) for the Eight Puzzle with Blind Search

A summary of the results obtained on a 300 MHz PC is shown in Table 2.1: no entries are shown for unsuccessful runs due to stack overflow or prohibitively long computing times; and, the value chosen for the horizon in Bounded Depth First search is the minimum number of moves needed to reach the goal state (row two in Table 2.1). ${ }^{18}$

Implementation Details

The system's states are internally represented by the term state/9; for example, the initial tile arrangement in Fig. 2.45 will be represented by state ($3,4,5,8,0,2,7,1,6$). (The zero stands for 'no tile'.) The link/2 predicate is defined in eight_links.pl by focusing on the movement of the position with no tile; for example, two of the four states linked to the initial state in Fig. 2.45 are generated by means of the following clauses of link/2,

```
link(InState,OutState) :- down(InState,OutState).
link(InState,OutState) :- left(InState,OutState).
```

The pertinent clauses of down/2 and left/2 are respectively defined by

[^10]```
consult(eight_puzzle)
% blindsearches compiled into blindsearches 0.00 sec, 7,408 bytes
% eight_links compiled into links 0.00 sec, 4,152 bytes
% eight_puzzle compiled 0.05 sec, 19,576 bytes
Yes
?- tiles.
Start state for test case number 1:
812
7 3
645

*
Start state for test case number 6
345
8 2
716
_---------------
Select test case (a number between 1 and 11)... 6.
Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... id.
% 2,299,419 inferences in 34.17 seconds (67294 Lips)
Solution in 16 steps.
Show result in full? (y/n) y
345
8 2
7 16

812
7}
345
8 12
 76
_----------------
1 3
8 24
765

123
8 4
765
Yes
```

Figure 2.46: Solving the Eight Puzzle

```
down(state(A,B,C,D,O,E,F,G,H), state(A,B,C,D,G,E,F,O,H)).
left(state(A,B,C,D,O,E,F,G,H), state(A,B,C,O,D,E,F,G,H)).
```

Exercise 2.22. Complete the definition of link/2.
All the other problem relevant predicates are defined in the top module in eight_puzzle.pl which imports predicates from both eight_links.pl and blindsearches.pl.

## Tail Recursion

If the last goal in the body of a recursive clause is the head, it is termed tail recursive. If all recursive clauses of a predicate are tail recursive, and a cut (!) precedes the last goal in each, the Prolog compiler will not retain reference to the earlier goals and the implementation will not crash due to stack overflow, and, it will run faster. Some compilers will recognize tail recursion automatically without the additional cut(s). It is good practice to use the cut for tail recursive code whatever system one uses.

The entries of Table 2.1 have been obtained by tail recursive versions using cuts. This is an important addition here as some test cases proved unsolvable without the additional cut.


Download free eBooks at bookboon.com


[^0]:    ${ }^{1}$ This is a network from the AI-classic [34].
    ${ }^{2}$ Notice that the argument in use_module/1 is the filename without the .pl extension.

[^1]:    ${ }^{3}$ SWI-Prolog will suggest a correction if the predicate name is used without the requisite prefix:
    ?- connect (a,N).
    Correct to: edges:connect(a, N)? yes
    $\mathrm{N}=\mathrm{b}$;

[^2]:    ${ }^{4}$ The shaded entries facilitate explanatory screen displays only.

[^3]:    ${ }^{5}$ For a pseudocode of REVERSE, see [9, p. 24].
    ${ }^{6}$ By induction, this test simplifies to showing that the head of a putative path is not an entry in its tail.

[^4]:    ${ }^{7}$ The predicate bounded_df/5 is declared public because it will be used later in another module (see Sect. 2.6).
    ${ }^{8}$ The notes in Fig. 2.24 concerning the horizon refer to Fig 2.5, p. 51.

[^5]:    ${ }^{9}$ For example, if we apply the query
    ?- iterative_deepening(u,goal_path, link,PathFound).
    with the database in links.pl (as augmented in Exercise 2.2, p. 59), we won't get any response.

[^6]:    ${ }^{10}$ A solution may be missed, however, if Bounded Depth First search is used. Furthermore, if Iterative Deepening is selected in our implememtation, it will not terminate if the internally attempted start state does not lead to a solution.

[^7]:    ${ }^{11}$ Notice that the predicate $i s-p a t h / 1$ in hand_knit. pl is 'visible' from the module blindsearches without it being exported.
    12 A reasoned way to get hold of a start state is as follows. Pick any marked position and try out all segments originating from it. If there is a solution to the problem, then at least one of the segments thus produced may serve as a start state since the rope must pass through this position in particular.

[^8]:    ${ }^{13}$ To obtain a loop, the positions pos $(1,4)$ and $\operatorname{pos}(1,3)$ have been joined since they are the two extreme entries (first and last) of the path found.
    ${ }^{14}$ Another approach more in tune with Sect. 2.8 .2 will first create in the database at runtime the problem-specific facts defining link/2. (Alternatively, a problem-specific (temporary) file akin to hand_knit.pl may be created and consulted at runtime.) This should be accomplished by a second order predicate reading the definitions of size/2, circle/1 and sharp/1 from loop_puzzle1.pl (or its analogue). Subsequently, run the search as in Sect. 2.8.2.
    ${ }^{15}$ The suffix ' $a$ ' in the filename indicates that the solution process is automated.
    ${ }^{16}$ The initial segment is supplied via start_state/1 by manual input. A fully automated solution is considered in Exercise 2.13.

[^9]:    ${ }^{17}$ The L-shaped segment degenerates here into a straight line since it connects positions in adjacent columns.

[^10]:    ${ }^{18}$ This will be found by Breadth First or Iterative Deepening as these algorithms find a shortest route to the goal node. In cases where both these algorithms fail, the minimum number of moves to the goal state has been established by an appropriate informed search algorithm from Chap. 3.

