
Download free eBooks at bookboon.com

Applications of Prolog

47

Blind Search

Chapter 2

Blind Search

Many problems in Artificial Intelligence (AI) can be formulated as network search problems. The crudest
algorithms for solving problems of this kind, the so called blind search algorithms, use the network’s connectivity
information only. We are going to consider examples, applications and Prolog implementations of blind search
algorithms in this chapter.

Since implementing solutions of problems based on search usually involves code of some complexity, modu-
larization will enhance clarity, code reusability and readibility. In preparation for these more complex tasks in
this chapter, Prolog’s module system will be discussed in the next section.

2.1 Digression on the Module System in Prolog

In some (mostly larger) applications there will be a need to use several input files for a Prolog project. We have
met an example thereof already in Fig. 3.5 of [9, p. 85] where consult/1 was used as a directive to include in
the database definitions of predicates from other than the top level source file. As a result, all predicates thus
defined became visible to the user: had we wished to introduce some further predicates, we would have had to
choose the names so as to avoid those already used. Clearly, there are situations where it is preferable to make
available (that is, to export) only those predicates to the outside world which will be used by other non-local
predicates and to hide the rest. This can be achieved by the built-in predicates module/2 and use module/1 .

As an illustrative example, consider the network in Fig. 2.1.1 The network connectivity in links.pl is
defined by the predicate link/2 which uses the auxiliary predicate connect/2 (Fig. 2.2).

The first line of links.pl is the module directive indicating that the module name is edges and that the
predicate link/2 is to be exported. All other predicates defined in links.pl (here: connect/2) are local to
the module and (normally) not visible outside this module.

Suppose now that in some other source file, link/2 is used in the definition of some new predicate (Fig. 2.3).
Then, the (visible) predicates from links.pl will be imported by means of the directive

:- use_module(links).2

The new predicate thus defined may be used as usual:

1This is a network from the AI–classic [34].
2Notice that the argument in use module/1 is the filename without the .pl extension.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

48

Blind Search

�
�
�
�

�
�
�
�

���

� � �
��
cba

d e f

gs

Figure 2.1: A Network

?- consult(df1).

% links compiled into edges 0.00 sec, 1,644 bytes

% df1 compiled 0.00 sec, 3,208 bytes

Yes

?- successors(a,L).

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Applications of Prolog

49

Blind Search

:- module(edges,[link/2]).

connect(a,b). connect(a,d). connect(a,s).

connect(b,c). connect(b,e).

connect(d,e). connect(d,s).

connect(e,f).

connect(f,g).

link(Node1,Node2) :- connect(Node1,Node2).

link(Node1,Node2) :- connect(Node2,Node1).

Figure 2.2: The File links.pl

:- use module(links).

...

...

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

Figure 2.3: Fragment of the File df1.pl

L = [b, d, s] ;

No

In our example, the predicate connect/2 will not be available for use (since it is local to the module edges

that resides in links.pl). A local predicate may be accessed, however, by prefixing its name by the module
name in the following fashion:3

?- edges:connect(a,N).

N = b ;

N = d ;

N = s ;

No

(Notice the distinct uses of the module name and the name of the file in which the module resides.)

2.2 Basic Search Problem

Let us assume that for the network in Fig. 2.1 we want to find a path from the start node s to the goal node
g. The search may be conducted by using the (associated) search tree shown in Fig. 2.4. It is seen that the

3SWI–Prolog will suggest a correction if the predicate name is used without the requisite prefix:

?- connect(a,N).

Correct to: edges:connect(a, N)? yes

N = b ;

...

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

50

Blind Search

0 .

1

2

3 . .

4 . .b
...

c e
...

a
...

�
�
�
�

�
�
�
�

b d
...

s
...

�
�
�
�

�
�
�
�

��������

a

f
...

g e
...

	
	
	

f b
...

d
...

�
�
�
�

�
�
�

������

e s
...

a
...

�
�
�
�

�����������

d

������������

�����������

s

Figure 2.4: The Search Tree

search tree is infinite but highly repetitive. The start node s is at the root node (level 0). At level 1, all tree
nodes are labelled by those network nodes which can be reached in one step from the start node. In general, a
node labelled n in the tree at level � has successor (or child) nodes labelled s1, s2, . . . if the nodes s1, s2, . . . in
the network can be reached in one step from node n. These successor nodes are said to be at level � + 1. The
node labelled n is said to be a parent of the nodes s1, s2, In Fig. 2.4, to avoid repetition, those parts of the
tree which can be generated by expanding a node from some level above have been omitted.

Some Further Terminology

• The connections between the nodes in a network are called links.

• The connections in a tree are called branches.

• In a tree, a node is said to be the ancestor of another if there is a chain of branches (upwards) which
connects the latter node to the former. In a tree, a node is said to be a descendant of another node if the
latter is an ancestor of the former.

In Fig. 2.5 we show, for later reference, the fully developed (and ’pruned ’) search tree. It is obtained from
Fig. 2.4 by arranging that in any chain of branches (corresponding to a path in the network) there should be
no two nodes with the same label (implying that in the network no node be visited more than once). All
information pertinent to the present problem is recorded thus in the file links.pl (Fig. 2.2) by link/2 . Notice
that the order in which child nodes are generated by link/2 will govern the development of the trees in Figs. 2.4
and 2.5: children of the same node are written down from left to right in the order as they would be obtained
by backtracking; for example, the node labelled d at level 1 in Fig. 2.4 is expanded by

?- link(d,Child).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

51

Blind Search

0 .

1

2

3 . . .

4

5

6 .

c

g

f d

�
�
�

�
�
�

e

����

�
�
�

b

g

f

c

b

�
�
�

�
�
�

e

d

�
�
�
�

�����

a

g

f

c a

�
�
�

�
�
�

b

�
�
�

�
�
�

e

c

g

f

e

�
�
�

�
�
�

b

a

�
�
�
�

�����

d

���������

���������

s

Figure 2.5: The Pruned Search Tree

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Applications of Prolog

52

Blind Search

Child = e ;

Child = s ;

Child = a ;

No

(The same may be deduced, of course, by inspection from links.pl, Fig. 2.2.) link/2 will serve as input to
the implementations of the search algorithms to be discussed next.

2.3 Depth First Search

The most concise and easy to remember illustration of Depth First is by the conduit model (Fig. 2.6). We start
with the search tree in Fig. 2.5 which is assumed to be a network of pipes with inlet at the root node s. The
tree is rotated by 90◦ counterclockwise and connected to a valve which is initially closed. The valve is then
opened and the system is observed as it gets flooded under the influence of gravity. The order in which the
nodes are wetted corresponds to Depth First.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

53

Blind Search

©×

���

c

gf

d

� � �

� �
�

e

�
�
�

� �
�

b

gf

cb

� � �

� �
�

ed

�
�
�

�
�
�
�

a

gf

c

a

� � �

� �
�

b

�
�
�

� �
�

e

c

gfe

� � �

� �
�

ba

�
�
�

�
�
�
�

d

�
�
�
�
�
�
�

s

�

�

Figure 2.6: Depth First Search – The Conduit Model

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

54

Blind Search

:- use module(links).

path(Node1,Node2,[Node1,Node2]) :- link(Node1,Node2).

path(Node1,Node2,[Node1|Path32]) :- link(Node1,Node3),

write(’visiting node ’), write(Node3), nl,

path(Node3,Node2,Path32).

Figure 2.7: The File naive.pl

2.3.1 Näıve Solution

We may be tempted to use Prolog’s backtracking mechanism to furnish a solution by recursion; our attempt is
shown in Fig. 2.7.4 However, it turns out that the implementation does not work due to cycling in the network.
The query shown below illustrates the problems arising.

?- path(s,g,Path).

visiting node a

visiting node b

visiting node c

visiting node b

visiting node c

...

Action (h for help) ? abort

% Execution Aborted

2.3.2 Incremental Development Using an Agenda

We implement Depth First search incrementally using a new approach. The idea is keeping track of the nodes
to be visited by means of a list, the so called list of open nodes, also called the agenda. This book–keeping
measure will turn out to be amenable to generalization; in fact, it will be seen that the various search algorithms
differ only in the way the agenda is updated.

First Version

A first, preliminary, form of Depth First search is stated in Algorithm 2.3.1. The definition of the corresponding
predicate, depth first/2 , is shown in Fig. 2.8. (At this stage, we are attempting an implementation which
merely succeeds once the goal node is found.)

4The shaded entries facilitate explanatory screen displays only.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

55

Blind Search

Algorithm 2.3.1: DepthFirst(StartNode, GoalNode)

comment: First temptative implementation of Depth First Search

RootNode ← StartNode
OpenList ← [RootNode]
[H |T] ← OpenList
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SuccList ← successors of H
OpenList ← SuccList ++ T
if OpenList = []

then return (failure)
[H |T] ← OpenList

return (success)

What is the crucial feature of this algorithm? It is the way the list of open nodes is manipulated. There are
two possibilities:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Applications of Prolog

56

Blind Search

:- use module(links).

depth first(Start,Goal) :- dfs loop([Start],Goal).

dfs loop([Goal|],Goal).

dfs loop([CurrNode|OtherNodes],Goal) :-

successors(CurrNode,SuccNodes),

write(’Node ’), write(CurrNode),

write(’ is being expanded. ’),

append(SuccNodes,OtherNodes,NewOpenNodes),

write(’Successor nodes: ’), write(SuccNodes), nl,

write(’Open nodes: ’), write(NewOpenNodes), nl,

dfs loop(NewOpenNodes,Goal).

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

Figure 2.8: The File df1.pl

• Inspection. We may inspect the agenda’s head to see whether it is the goal node.

• Updating. If the head is not the goal node, we determine the head’s successor or successors. They are
collected into a list, SuccList , say, (which may well be empty) and a new agenda will be formed by
appending the tail of the old agenda to SuccList . The order of entries in the list just created is essential:
the successors of the most recently visited node are placed to the front, thereby becomig candidates for
more immediate attention.

As mentioned earlier, search algorithms differ from each other only in the way the list of open nodes is updated.
The updating mechanism of Depth First is on a last–in–first–out (LIFO) basis.

The (unsatisfactory) behaviour of depth first/2 in the present form is exemplified in Fig. 2.9. Obviously,
the order of the nodes’ expansion is as expected but we descend into ever greater depths of (the leftmost part
of) the tree in Fig. 2.4. There are two possible solutions to this problem – they will be discussed below.

Using a List of ‘Closed Nodes’

The underlying idea of this approach is that a node on the search tree should not be included in the open
list (again) if a node with the same label has ever been visited before. The examples below will show (and
indeed a moment of reflection should confirm) that this method may not find all goal nodes (or all paths to
the goal node(s)). The realization of the idea is as follows. Once we remove H from the list of open nodes
(Algorithm 2.3.1) we should include H into another list, the list of closed nodes, indicating that it should not
be expanded (i.e. included in the list of open nodes) ever again. This version of Depth First search is shown
as Algorithm 2.3.2. The corresponding Prolog program, df2.pl, is shown in Fig. 2.10. Finally, an interactive
session with this second version of depth first/2 is shown in Fig. 2.11. The missing (shaded) parts in Fig. 2.10
are goals for displaying information on the progress of the search as seen in Fig. 2.11.

Exercise 2.1. Complete the code in Fig. 2.10 such that the response shown in Fig. 2.11 is achieved. �

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

57

Blind Search

�

�

�

�

?- depth first(s,g).

Node s is being expanded. Successor nodes: [a, d]

Open nodes: [a, d]

Node a is being expanded. Successor nodes: [b, d, s]

Open nodes: [b, d, s, d]

Node b is being expanded. Successor nodes: [c, e, a]

Open nodes: [c, e, a, d, s, d]

...

Action (h for help) ? abort

% Execution Aborted

Figure 2.9: Illustrative Query for depth first/2 – First Version

Algorithm 2.3.2: DepthFirst(StartNode, GoalNode)

comment: Depth First Search with a List of Closed Nodes

RootNode ← StartNode
OpenList ← [RootNode]
ClosedList ← []
[H |T] ← OpenList
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H (1)
OpenList ← (SuccList ∩ ClosedListc) ++ T (2)
ClosedList ← [H |ClosedList] (3)
if OpenList = []

then return (failure)
[H |T] ← OpenList

return (success)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

58

Blind Search

:- use module(links).

depth first(Start,Goal) :- ... , % clause 0

dfs loop([Start],[],Goal). %

dfs loop([Goal|], ,Goal) :- % clause 1

dfs loop([CurrNode|OtherNodes],ClosedList,Goal) :- % clause 2

successors(CurrNode,SuccNodes),

... , %

findall(Node,(member(Node,SuccNodes), %

not(member(Node,ClosedList))),Nodes),

append(Nodes,OtherNodes,NewOpenNodes), %

... , %

dfs loop(NewOpenNodes,[CurrNode|ClosedList]︸ ︷︷ ︸,Goal). %

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

�� 	
Implements (1)
}�
�� 	
Implements (2)

⎫⎬
⎭�

�� 	
Implements (3)�

Figure 2.10: The File df2.pl

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Applications of Prolog

59

Blind Search

�

�

�

�

?- depth first(s,g).

Open: [s], Closed: []

Node s is being expanded. Successors: [a, d]

Open: [a, d], Closed: [s]

Node a is being expanded. Successors: [b, d, s]

Open: [b, d, d], Closed: [a, s]

Node b is being expanded. Successors: [c, e, a]

Open: [c, e, d, d], Closed: [b, a, s]

Node c is being expanded. Successors: [b]

Open: [e, d, d], Closed: [c, b, a, s]

Node e is being expanded. Successors: [f, b, d]

Open: [f, d, d, d], Closed: [e, c, b, a, s]

Node f is being expanded. Successors: [g, e]

Open: [g, d, d, d], Closed: [f, e, c, b, a, s]

Goal found: g

Yes

Figure 2.11: Illustrative Query for depth first/2 – Second Version

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

��

u

vw

Figure 2.12: The New Network Component

Exercise 2.2. Suppose we want to model a network which arises by augmenting the graph in Fig. 2.1 with
the one shown in Fig. 2.12, p. 59. (The new network thus comprises two unconnected components.)

(a) Augment the database in Fig. 2.2 to reflect the connectivity of the new network.

(b) Write down hand computations for the queries

(i) ?- depth first(d,c).

(ii) ?- depth first(u,c).

�

The predicate depth first/2 from df2.pl (Fig. 2.10) finds a goal node (if there is one) but does not return
the correspondig path. (We ignore the shaded clauses in Fig. 2.10 as they are there for explanatory reasons
only.) A new, improved version, depth first(+Start,+Goal,-Path) , say, should return also the Path found,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

60

Blind Search

given the Start node and the Goal node. We modify the auxiliary predicate dfs loop/3 from df2.pl in two
ways.

• Now, its first argument will take the list of open paths (and not that of open nodes). This is the argument
where we accumulate (maintain) the agenda.

• Into an additional (fourth) argument will the path from Start to Goal be copied as soon as it appears
at the head of the agenda. The search is then finished.

• The second and third arguments of dfs loop/4 will hold, as before, the list of closed nodes and the goal
node, respectively.

The hand computations in Fig. 2.13, p. 61, indicate the required behaviour of the new version of depth first/3 .
Paths will be represented by the lists of nodes visited; internally, they will be read from right to left. For

example, the list [g, f, e, b, a, s] will stand for the path s → a → b → e → f → g. In Fig. 2.13, all paths
we have been temporarily admitted to the agenda which arise by expanding the head of the head of the agenda.
(Expanding a node means finding its successors.) Immediately after expansion, however, those paths have been
removed (indicated by /////) whose head features in the list of closed nodes in the line above. To implement
the corresponding predicate depth first/3 (Fig.2.14, p. 63), Algorithm 2.3.3 has been used with an auxiliary
procedure EXTENDPATH.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Applications of Prolog

61

Blind Search

depth first(s, g, Path) ��

dfs loop([[s]], [], g, Path) ��

dfs loop([[a,s], [d,s]], [s], g, Path) ��

dfs loop([[b,a,s], [d,a,s], [s,a,s]/////, [d,s]], [a,s], g, Path) ��

dfs loop([[c,b,a,s], [e,b,a,s], [a,b,a,s]///////, [d,a,s], [d,s]], [b,a,s], g, Path) ��

dfs loop([[b,c,b,a,s],//////// [e,b,a,s], [d,a,s], [d,s]], [c,b,a,s], g, Path) ��

dfs loop([[f,e,b,a,s], [b,e,b,a,s],//////// [d,e,b,a,s], [d,a,s], [d,s]], [e,c,b,a,s], g, Path) ��

dfs loop([[g,f,e,b,a,s], [e,f,e,b,a,s],///////// [d,e,b,a,s], [d,a,s], [d,s]], [f,e,c,b,a,s], g, Path) ��

dfs loop([[g,f,e,b,a,s], [d,e,b,a,s], [d,a,s], [d,s]], [f,e,c,b,a,s], g, [g,f,e,b,a,s]) ��

depth first(s, g, [g,f,e,b,a,s]) �� success

Figure 2.13: Hand Computations for the Query ?- depth first(s,g,Path).

Exercise 2.3. Define extend path(+Nodes,+Path,-NewPaths) from Algorithm 2.3.3. �

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

62

Blind Search

Algorithm 2.3.3: DepthFirst(StartNode, GoalNode)

comment: Depth First with Closed Nodes and Open Paths

procedure ExtendPath([x1, · · · , xN], list)
comment: To return [] if the first argument is []

for i ← 1 to N
do

{
listi ← [xi|list]

return ([list1, · · · , listN])

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
ClosedNodes ← []
[[H |T]|TailOpenPaths] ← OpenPaths
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H
NewOpenNodes ← (SuccList∩ ClosedListc)
NewPaths ← ExtendPath(NewOpenNodes, [H |T])
OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
Path ← Reverse([H |T])5

output (Path)

In the query shown below, the predicate depth fist/3 thus defined finds the leftmost path to the goal node
in Fig. 2.4. On backtracking, no further paths to the goal node will be found.

?- depth first(s,g,Path).

Path = [s, a, b, e, f, g] ;

No

Path Checking

This technique allows all paths to the goal node to be found. We do not use a list of closed nodes here. Instead,
upon prefixing the head of the agenda by each of the successors of its head, we check for each of the lists thus
created whether it is a path. In Algorithm 2.3.4, p. 64, this test is carried out by the as yet unspecified procedure
ISPATH. Usually, paths will be required not to contain cycles. Then, the procedure ISPATH checks for distinct
entries of the argument list.6

The main body of Algorithm 2.3.4 has been implemented by the predicate depth first/4 , defined in
df4.pl, Fig. 2.15, p. 65. A few noteworthy features of this implementation of Depth First are as follows.

5For a pseudocode of REVERSE, see [9, p. 24].
6By induction, this test simplifies to showing that the head of a putative path is not an entry in its tail.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

63

Blind Search

:- use module(links).

depth first(Start,Goal,PathFound) :-

dfs loop([[Start]],[],Goal,PathFoundRev),

reverse(PathFoundRev,PathFound).

dfs loop([[Goal|PathTail]|], ,Goal,[Goal|PathTail]).

dfs loop([[CurrNode|T]|Others],ClosedList,Goal,PathFound) :-

successors(CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

not(member(Node,ClosedList))),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

dfs loop(NewOpenPaths,[CurrNode|ClosedList],Goal,PathFound).

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

% auxiliary predicate extend path/3 ...

...

Figure 2.14: The File df3.pl – Depth First with Closed Nodes and Open Paths

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Applications of Prolog

64

Blind Search

• The arguments of depth first(+Start,+G Pred,+C Pred,-PathFound) , the main predicate, play the
following rôle:

– As before, Start is unified with the start node.

– G Pred is unified with the name of the goal predicate. (In earlier implementations, a goal node
was expected.) Due to this generalization, in more complex applications, now a goal node may be
specified by a condition. Several goal nodes may thus also be accounted for.

– The third argument, C Pred , is unified with the name of the connectivity predicate which in earlier
implementations was link/2 . Greater flexibility is afforded by this additional argument. In the
example query in Fig. 2.17, p. 66, the connectivity predicate link/2 is used which is defined in
links.pl (see p. 49) from where it is imported by the first use module/1 directive in df4.pl.

– Finally, on return, the last argument is unified with the path found.

Algorithm 2.3.4: DepthFirst(StartNode, G Pred, C Pred)

comment: Depth First with Path Checking.
Procedures are assumed available for

• Testing whether a path is a goal path by using
the procedure in G Pred;

• Finding successors of a node by using the con-
nectivity procedure in C Pred.

procedure IsPath(list)
comment: Returns a Boolean value.

Is application specific.

...

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
[[H |T]|TailOpenPaths] ← OpenPaths
while [H |T] is not a goal path

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H
ONodes ← list of S ∈ SuccList with IsPath([S, H |T])
NewPaths ← ExtendPath(ONodes, [H |T])
OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
Path ← Reverse([H |T])
output (Path)

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

65

Blind Search

:- use module(links).

:- use module(searchinfo).

depth first(Start,G Pred,C Pred,PathFound) :-

dfs loop([[Start]],G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

dfs loop([Path|],G Pred, ,Path) :- call(G Pred,Path).

dfs loop([[CurrNode|T]|Others],G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

dfs loop(NewOpenPaths,G Pred,C Pred,PathFound).

% auxiliary predicates ...

successors(C Pred,Node,SuccNodes) :-

findall(Successor,call(C Pred,Node,Successor),SuccNodes).

extend path([], ,[]).

extend path([Node|Nodes],Path,[[Node|Path]|Extended]) :-

extend path(Nodes,Path,Extended).

Figure 2.15: The File df4.pl – Depth First with Path Checking

:- module(info,[goal path/1, is path/1]).

goal path([g|]).

is path([H|T]) :- not(member(H,T)).

Figure 2.16: The File searchinfo.pl

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

66

Blind Search

�

�

�

�

?- consult(df4).

% links compiled into edges 0.05 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% df4 compiled 0.05 sec, 4,944 bytes

Yes

?- depth first(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

Figure 2.17: Interactive Session for depth first/4 – Path Checking

• The while loop in Algorithm 2.3.4 is implemented by dfs loop/4 . It uses the predicate is path/1 , an
implementation of the procedure ISPATH.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Applications of Prolog

67

Blind Search

�
�
�
�
�
�
���

�
�
�

���

� � �
��
cba

d e f

gs

Figure 2.18: A Network (see Exercise 2.4, p. 67)

This predicate is imported from searchinfo.pl (Fig. 2.16, p. 65) by the second use module/1 directive
in df4.pl. In the present version of is path/1 , paths are defined to be lists with distinct entries.

• call/2 and call/3 , are used (see p. 40) to invoke the imported predicates goal path/1 and link/2 at
run time.

• It is seen from Fig. 2.17 that on backtracking all paths to the goal node are found.

Exercise 2.4. A new network is shown in Fig. 2.18, p. 67.

(a) Augment the file links.pl to reflect the connectivity of the new network.

(b) Suppose we want to find all paths from s to g such that no edge is traversed more than once but we
don’t mind visiting nodes several times. Define a new version of is path/1 in searchinfo.pl to this
new specification.

(c) Run depth first/4 to find all paths from s to g.

�

Exercise 2.5. Rewrite the definition of depth first/4 in Fig. 2.15 using difference lists.
Hints. You should represent paths, as before, by ordinary lists and write the agenda in terms of difference

lists. Modify accordingly the predicates dfs loop and extend path . The latter should be invoked by a new
version of depth first/4 , called depth first dl/4 . You should confirm the advantage of using difference
lists by a sample session. (The model solution is found in the file df.pl along with the old version based on
ordinary lists.) �

2.4 Breadth First Search

Another blind search algorithm is Breadth First. It visits the nodes of the search tree level by level from left to
right as indicated in Fig. 2.19. It always finds a shortest path to the goal node. Now the agenda is updated
on a first–in–first–out (FIFO) basis, thus the successors of a node just expanded will be put to the end of the
list of open nodes.

The definition of breadth first/4 in Fig. 2.20, p. 69, is arrived at by minor modifications of the code in
Fig. 2.15:

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

68

Blind Search

� �

� � � �

� � � � � �

� � � � �

c

g

f d

�
�
�

�
�
�

e

����

�
�
�

b

g

f

c

b

�
�
�

�
�
�

e

d

�
�
�
�

�����

a

g

f

c a

�
�
�

�
�
�

b

�
�
�

�
�
�

e

c

g

f

e

�
�
�

�
�
�

b

a

�
�
�
�

�����

d

���������

���������

s

Figure 2.19: Breadth First

• Rename the loop predicate to bfs loop ,

• Change the order of the first two arguments in the append goal,

• Leave the definition of the auxiliary predicates unchanged.

The behaviour of breadth first/4 is shown in Fig. 2.21. The same paths are found as before, albeit in a
different order.

Exercise 2.6. Rewrite the definition of breadth first/4 in Fig. 2.20 using difference lists. Compare the
performance of your solution with that of the old version.

Hints. You may take the model solution of Exercise 2.5, p. 175, or your own solution, and make the necessary
changes: rename the loop predicate; modify the updating of the agenda (now represented as a difference list);
and, use extend path dl/3 as defined in the solution of Exercise 2.5. For later reference, the new version
should be placed in the same file as the earlier, list based version (i.e. bf.pl). �

2.5 Bounded Depth First Search

Analysing Depth First and Breadth First will show that (e.g. [29]), on average, to find a goal node,

• Depth First needs less computer memory than Breadth First,

• The time requirement of Breadth First is asymptotically comparable to that of Depth First, and,

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

69

Blind Search

} �
�

�

Modified Goal
(see Fig. 2.15,
p. 65)

�

} �� 	
Copy from Fig. 2.15, p. 65�

:- use module(links).

:- use module(searchinfo).

breadth first(Start,G Pred,C Pred,PathFound) :-

bfs loop([[Start]],G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

bfs loop([Path|],G Pred, ,Path) :- call(G Pred,Path).

bfs loop([[CurrNode|T]|Others],G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Others,Paths,NewOpenPaths),

bfs loop(NewOpenPaths,G Pred,C Pred,PathFound).

% auxiliary predicates ...

...

Figure 2.20: The File bf.pl – Breadth First with Path Checking

�

�

�

�

?- consult(bf).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% bf compiled 0.05 sec, 4,948 bytes

Yes

?- breadth first(s,goal path,link,Path).

Path = [s, d, e, f, g] ;

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

Figure 2.21: Interactive Session for breadth first/4

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

70

Blind Search

• Breadth First always finds the shortest path to the goal node (if there is one) whereas (for infinite search
trees) Depth First may fail to find a goal node even if one exists.

Bounded Depth First search, shown in Algorithm 2.5.1, p. 71, combines the idea of the two search algorithms:
it will explore the search tree up to a specified depth (the horizon) by Depth First. Bounded Depth First is
also the basis for the more sophisticated Iterative Deepening, to be discussed in the next section.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Applications of Prolog

71

Blind Search

Algorithm 2.5.1: Bounded DF(StartNode, G Pred, C Pred,
Horizon)

comment: Bounded Depth First Search.
Procedures are assumed available for

• Testing whether a path is a goal path by using
the procedure in G Pred;

• Finding successors of a node by using the con-
nectivity procedure in C Pred.

procedure IsPath(list)
comment: Returns a Boolean value.

Is application specific.

...

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
[[H |T]|TailOpenPaths] ← OpenPaths
ListLength ← Length([H |T])
PathLength ← ListLength− 1
while [H |T] is not a goal path

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if PathLength < Horizon

then

⎧⎪⎪⎨
⎪⎪⎩

SuccList ← successors of H
ONodes ← list of S ∈ SuccList with

IsPath([S, H |T])
NewPaths ← ExtendPath(ONodes, [H |T])

else
{
NewPaths ← []

OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
ListLength ← Length([H |T])
PathLength ← ListLength− 1

Path ← Reverse([H |T])
output (Path)

Exercise 2.7. In the query below, the predicate bounded df/5 is used to search the tree in Fig. 2.5 up to
level 5 for the goal node g.

?- bounded df(s,goal path,link,5,PathFound).

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

72

Blind Search

} �
�

�
�Loop Predicate b dfs loop/5

to be defined here
�

} �� 	
Copy from Fig. 2.15, p. 65�

:- module(bounded depth first,[bounded df/5]).7

:- use module(links).

:- use module(searchinfo).

bounded df(Start,G Pred,C Pred,Horizon,PathFound) :-

b dfs loop([[Start]],G Pred,C Pred,Horizon,PathFoundRev),

reverse(PathFoundRev,PathFound).

...

% auxiliary predicates ...

...

Figure 2.22: The File bdf.pl – Bounded Depth First (for Exercise 2.7)

No

Based on Algorithm 2.5.1, define bounded df/5 by completing the missing parts in Fig. 2.22.
Hint. The definition of b dfs loop/5 may be obtained from that of dfs loop/4 in Fig. 2.15 by augmenting

the latter with a new argument for the horizon. �

2.6 Iterative Deepening

Bounded Depth First search is invoked here repeatedly with a successively larger horizon. This may be performed
until a path to the goal node is found or until some CPU time limit is exceeded. We choose the former with
unit increment. An implementation and a test run are shown in Figs. 2.23 and 2.24, respectively.8 Iterative
Deepening may seem computationally wasteful as at any one stage the previous stage is recomputed but it can
be shown that it is asymptotically optimal (eg [29]).

Exercise 2.8. The interactive session in Fig. 2.24 illustrates that, on backtracking, Iterative Deepening will
rediscover the goal paths found earlier. Modify our implementation of Iterative Deepening such that this does
not happen, i.e. paths found earlier for a smaller horizon should be ignored.

Hint. Fig. 2.25 shows a sample session with this modified version. The previous horizon is recorded in the
database by means of the predicate lastdepth/1 . Goal paths shorter than the value herein are ignored. To
implement this, you will have to modify the first clause of b dfs loop/5 in bdf.pl. You will also have to
arrange for the updating of lastdepth/1 in the database. �

Exercise 2.9. Yet another, and perhaps the most usual form of Iterative Deepening will find the (leftmost)
goal node at the shallowest depth (presuming that one exists) and then stop searching. For our example, such
a version will respond as follows,

?- iterative deepening(s,goal path,link,PathFound).

7The predicate bounded df/5 is declared public because it will be used later in another module (see Sect. 2.6).
8The notes in Fig. 2.24 concerning the horizon refer to Fig 2.5, p. 51.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

73

Blind Search

:- use module(bdf).

iterative deepening(Start,G Pred,C Pred,PathFound) :-

iterative deepening aux(1,Start,G Pred,C Pred,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

bounded df(Start,G Pred,C Pred,Depth,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

NewDepth is Depth + 1,

iterative deepening aux(NewDepth,Start,G Pred,C Pred,PathFound).

Figure 2.23: The File iterd.pl – Iterative Deepening

PathFound = [s, d, e, f, g] ;

No

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Applications of Prolog

74

Blind Search

�

�

�

�

?- consult(iterd).

% links compiled into edges 0.06 sec, 1,856 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% bdf compiled into bounded depth first 0.06 sec, 5,784 bytes

% iterd compiled 0.06 sec, 7,664 bytes

Yes

?- iterative deepening(s,goal path,link,PathFound).

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

PathFound = [s, d, a, b, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

...

}
Horizon = 4�⎫⎬

⎭ Horizon = 5�⎫⎪⎪⎬
⎪⎪⎭ Horizon = 6�

Figure 2.24: Sample Session – Iterative Deepening

Implement this version of Iterative Deepening. �

Finally, notice that, for finite search trees, Iterative Deepening has an unpleasant feature not found with the
other blind search algorithms: if there is no goal node, Iterative Deepening won’t terminate.9 This will cause
problems in applications where a sequence of potential start nodes is supplied to the algorithm some of which
won’t lead to a goal node. (An example of this will be seen in Sect. 2.8).

2.7 The Module blindsearches

The implementations of the algorithms from the preceding sections have been put together in blindsearches.pl
to form the module blindsearches . This allows us to create an implementation of the network search problem
anew which then may serve as a template for other uses of blindsearches . The top level is netsearch.pl,
Fig. 2.26, p. 75. The following shows an interactive session using search/0 from netsearch.pl.

?- consult(netsearch).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% blindsearches compiled into blindsearches 0.06 sec, 7,284 bytes

% netsearch compiled 0.06 sec, 14,312 bytes

?- search.

Enter start state (a/b/c/d/e/f/s)... s.

Select algorithm (df/df dl/bf/bf dl/bdf/id)... bdf.

9For example, if we apply the query

?- iterative deepening(u,goal path,link,PathFound).

with the database in links.pl (as augmented in Exercise 2.2, p. 59), we won’t get any response.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

75

Blind Search

�

�

�

�

?- iterative deepening(s,goal path,link,PathFound).

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, a, b, e, f, g] ;�� ��Ctrl +
�� ��C

Action (h for help) ? abort

% Execution Aborted

?- lastdepth(D).

D = 396

Yes

} No response
after this

�

} Last value of
horizon

�

Figure 2.25: Sample Session – Modified Iterative Deepening (for Exercise 2.8)

:- use module(links).

:- use module(searchinfo).

:- use module(blindsearches).

search :-

G = goal path,

get start state(S) ,

select algorithm(A) ,

(A = bdf, get horizon(Horizon) ; true), !,

((A = df, depth first(S,G,link,PathFound));

(A = df dl, depth first dl(S,G,link,PathFound));

(A = bf, breadth first(S,G,link,PathFound));

(A = bf dl, breadth first dl(S,G,link,PathFound));

(A = bdf, bounded df(S,G,link,Horizon,PathFound));

(A = id, iterative deepening(S,G,link,PathFound))),

show nodes(PathFound) ,

terminate .

% missing predicates (shaded) to be defined here ...

...

Figure 2.26: The File netsearch.pl (for Exercise 2.10)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

76

Blind Search

Enter horizon... 5.

Nodes visited: s -> a -> b -> e -> f -> g

Stop search? (y/n) n.

Nodes visited: s -> a -> d -> e -> f -> g

Stop search? (y/n) y.

Yes

Exercise 2.10. Define the missing predicates (shaded) in Fig. 2.26. (You will have to use the built-in
predicate read/1 for reading a term. Notice that the input from the keyboard always finishes with a dot (.)
as shown above.) �

2.8 Application: A Loop Puzzle

2.8.1 The Puzzle

This is a more substantial example showing that some problems can be formulated as a network search problem
thereby making them amenable to a solution by the algorithms described earlier. The idea of the puzzle
considered here originates from the puzzle magazine [17].

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

77

Blind Search

We are given a rectangular board some positions of which are marked by circles (0) and sharps (#) as shown
in the upper half of Fig. 2.27, p. 78. The task is to place a closed loop of a rope onto the board such that the
following conditions are met:

• The rope connects contiguous positions horizontally or vertically but not diagonally. It does not self-
intersect.

• Each position is visited by the rope at most once. (This follows, of course, also from the fact that the
rope is not self-intersecting.) In particular, there may well be positions which are not visited at all.

• Each marked position is visited exactly once.

• Adjacent marks on the rope of the like kind (i.e. both circles or both sharps) are connected by a straight
piece of rope.

• Adjacent marks on the rope which are different (i.e. if one is a circle and the other is a sharp) are
connected by a piece of rope which takes a right angle turn.

A puzzle from [17] is solved in Fig. 2.27 by the model implementation. It is run interactively and carries out
the following steps in turn:

1. It displays a sketch of the board and the arrangement of the marks (circles and sharps).

2. It gives the user a choice between the various search algorithms.

3. It tries to solve the problem and, if a solution exists, it gives a pictorial display of the loop’s position on
the board.10 If no solution is found, loop/0 should fail. Furthermore, if there are several solutions, the
implementation should find all of them.

2.8.2 A ‘Hand-Knit’ Solution

The core question is obviously how the present problem translates to a network search problem. (For the time
being, we won’t be concerned with the generation of the interface and display of the loop found as they are
relatively straightforward, though laborious.)

As a first step, we want to illustrate by way of the specific case from Sect. 2.8.1 how the problem can be
solved by directly creating (i.e. defining by facts) the predicates needed by the module blindsearches . The
information concerning the specifics of the puzzle is defined in the file loop puzzle1.pl shown in Fig. 2.28.
Before defining the connectivity predicate which, as usual, will be called link/2 , we will have to find a suitable
representation for the system’s states. The rope will be pieced together segment by segment, i.e. by progressing
from one mark to the next. It seems therefore appropriate to identify the states of the system (i.e. the nodes
of the corresponding network) with rope segments connecting marked positions.

A list representation will be used for rope segments and progression in the list will be from right to left.
Thus, for example, movement from a circle at position pos(1,4) to a sharp at position pos(2,2) is indicated
by either of the following two segments.

[pos(2,2),pos(2,3),pos(2,4)] (2.1)

10A solution may be missed, however, if Bounded Depth First search is used. Furthermore, if Iterative Deepening is selected in
our implememtation, it will not terminate if the internally attempted start state does not lead to a solution.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

78

Blind Search

�

�

�

�

?- consult(loop puzzle1).

% blindsearches compiled into blindsearches 0.00 sec, 7,284 bytes

% small_board compiled into small_board 0.00 sec, 6,224 bytes

% board compiled into board 0.05 sec, 7,696 bytes

% loops compiled into loops 0.11 sec, 31,028 bytes

% loop_puzzle1 compiled 0.11 sec, 32,324 bytes

Yes

?- loop.

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... df.

+-------+-------+-------+-------+-------+-------+
************************0	********#				
*			*	*	*
+---*---+-------+-------+---*---+---*---+---*---+					
*			*	*	*
#	#****************	*	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
*	************************0	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
#	0********************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	************************#********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
**0					
+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.

Yes

Figure 2.27: Sample Session – The Loop Puzzle

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

79

Blind Search

} �� 	
Top level module is in loops.pl��� 	
Number of rows �� 	
Number of columns�

�

:- use module(loops).

size(6,6).

circle(pos(1,4)). circle(pos(3,5)).

circle(pos(4,2)). circle(pos(6,6)).

sharp(pos(1,6)). sharp(pos(2,1)). sharp(pos(2,2)).

sharp(pos(4,1)). sharp(pos(5,5)).

Figure 2.28: The File loop puzzle1.pl

and
[pos(2,2),pos(1,2),pos(1,3)] (2.2)

These segments are indicated by solid arrows in Fig. 2.29. Notice that the position at which the segment
arrives, here pos(2,2), features as the head of its list representation whereas the board position from which
the segment originates is omitted from the list.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

80

Blind Search

�
� �

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+
1 2 3 4 5 6

Figure 2.29: Constructing a Solution of the Loop Puzzle

(This will enable us simply to string together the final rope from its segments without being concerned with
duplication of some positions.) The marked positions connected by a segment will be adjacent on the rope of
which the segment is part of. We require therefore that the only marked position be the head of the segment’s
list representation. Thus, for example,

[pos(4,1),pos(3,1),pos(2,1),pos(1,1),pos(1,2),pos(1,3)]

is not a segment as it meets the marked position pos(2,1) ‘on its way’ from pos(1,4) to pos(4,1). We now
take the segment

[pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)] (2.3)

which is deemed to stretch from the sharp at pos(5,5) to the circle at pos(1,4). This is indicated by the
dashed arrow in Fig. 2.29. (The other potential segment connecting the same positions as the one in (2.3) must
be ruled out since it is blocked by the mark (circle) in pos(3,5).) To indicate that the segment in (2.2) is
linked to that in (2.3), we declare in the database the following fact:

link([pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)], [pos(2,2),pos(1,2),pos(1,3)]).

Notice that the order of the arguments in link/2 matters: according to our interpretation, the segment in the
first argument is visited first, followed by the segment in the second argument. The corresponding fact linking
the segments in (2.3) and (2.1) does not hold if self-intersecting loops are excluded. Let us assume, however,
that at this stage we do not care whether a rope is self-intersecting since this will be attended to later when we
define the predicate is path/1 . Then, a more concise and more general form of the above fact is given by

link([pos(1,4)|_], [pos(2,2),pos(1,2),pos(1,3)]).

(This simply states that the segment [pos(2,2),pos(1,2),pos(1,3)] will join any segment pointing at
pos(1,4).) There are three other segments also originating from the circle in pos(1,4); they give rise to
the following fact each.

link([pos(1,4)|_], [pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

link([pos(1,4)|_], [pos(2,2),pos(2,3),pos(2,4)]).

link([pos(1,4)|_], [pos(5,5),pos(5,4),pos(4,4),pos(3,4),pos(2,4)]).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

81

Blind Search

} �� 	
Define link/2 here (see Exercise 2.11, p. 81)�

} ��
�
�The goal path

has 9 segments
�} �
�

�
�The goal path is

closed

�

⎫⎪⎪⎬
⎪⎪⎭
�
�

�

Exclude self-
intersecting
paths

�

:- use module(blindsearches).

...

start state([pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

goal path([H|T]) :- length([H|T],9),

last(E,T),

link(H,E).

is path([H|T]) :- not(prohibit([H|T])).

prohibit([S|[H|]]) :- not(disjoint(S,H)).

prohibit([S|[|T]]) :- prohibit([S|T]).

disjoint([],).

disjoint([H|T],S) :- not(member(H,S)), disjoint(T,S).

Figure 2.30: The File hand knit.pl

In a similar fashion, the segments originating from the circle in pos(3,5) give rise to the facts

link([pos(3,5)|_], [pos(1,6),pos(2,6),pos(3,6)]).

link([pos(3,5)|_], [pos(1,6),pos(1,5),pos(2,5)]).

link([pos(3,5)|_], [pos(2,1),pos(3,1),pos(3,2),pos(3,3),pos(3,4)]).

link([pos(3,5)|_], [pos(2,2),pos(3,2),pos(3,3),pos(3,4)]).

link([pos(3,5)|_], [pos(2,2),pos(2,3),pos(2,4),pos(2,5)]).

link([pos(3,5)|_], [pos(4,1),pos(3,1),pos(3,2),pos(3,3),pos(3,4)]).

Exercise 2.11. Complete the definition of link/2 in this fashion. There will be 37 facts in total forming
9 groups, each group corresponding to a marked position. (You will find the solution of this exercise in the file
hand knit.pl.) �

The definition of link/2 and those of some other predicates11 are in the file hand knit.pl, partially shown
in Fig. 2.30. It is also seen from hand knit.pl that one of the segments has been chosen as a start state by
visual inspection of Fig. 2.29.12 We are now in a position to find a solution interactively. After consulting
hand knit.pl, we invoke depth first/4 as follows.

?- start state(S), depth first(S,goal path,link, PathFound),

write term(PathFound,[]).

[[pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)],

[pos(4, 1), pos(3, 1)],

[pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1)],

[pos(5, 5), pos(5, 6)],

11Notice that the predicate is path/1 in hand knit.pl is ‘visible’ from the module blindsearches without it being exported.
12 A reasoned way to get hold of a start state is as follows. Pick any marked position and try out all segments originating from

it. If there is a solution to the problem, then at least one of the segments thus produced may serve as a start state since the rope
must pass through this position in particular.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

82

Blind Search

[pos(4, 2), pos(5, 2), pos(5, 3), pos(5, 4)],

[pos(1, 6), pos(2, 6), pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3)],

[pos(3, 5), pos(2, 5), pos(1, 5)],

[pos(2, 2), pos(3, 2), pos(3, 3), pos(3, 4)],

[pos(1, 4), pos(2, 4), pos(2, 3)]]

A list comprising 9 path segments has been returned. It is to be read from left to right but the list representations
of the segments are read from right to left. It is perhaps easier to interpret the result if we subsequently reverse
this list and then flatten it. The list thus produced will be a right-to-left display of the positions visited.

?- start state(S), depth first(S,goal path,link, PathFound),

reverse(PathFound, R), flatten(R, F), write_term(F,[]).

[pos(1, 4), pos(2, 4), pos(2, 3), pos(2, 2), pos(3, 2), pos(3, 3),

pos(3, 4), pos(3, 5), pos(2, 5), pos(1, 5), pos(1, 6), pos(2, 6),

pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3), pos(4, 2),

pos(5, 2), pos(5, 3), pos(5, 4), pos(5, 5), pos(5, 6), pos(6, 6),

pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1),

pos(4, 1), pos(3, 1), pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)]

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

83

Blind Search

:- use module(blindsearches).

:- use module(automated).

size(6,6).

circle(pos(1,4)). circle(pos(3,5)).

circle(pos(4,2)). circle(pos(6,6)).

sharp(pos(1,6)). sharp(pos(2,1)).

sharp(pos(2,2)). sharp(pos(4,1)). sharp(pos(5,5)).

Figure 2.31: The File loop puzzle1a.pl

The path thus obtained is seen to be the one shown in Fig. 2.27.13

2.8.3 Project: Automating the Solution Process

In the ‘hand-knit’ solution from the previous section, the information specific to the puzzle was conveyed to
Prolog via the predicate link/2 , defined in hand knit.pl by Prolog facts which were arrived at laboriously
by visual inspection of loop puzzle1.pl. This arrangement, though unsatisfactory, has been useful in showing
that this type of puzzle can be solved as a network search problem. We are aiming for a more flexible and
automated implementation, however, which will solve any problem of this type by combining the problem-
specific information from a file like loop puzzle1.pl with a rule-based and not problem-dependent definition
of link/2 .14

You will be asked to find a rule-based definition of link/2 in Exercise 2.12 below. The suggested file
structure is as follows. The information concerning this particular puzzle should be recorded in the file
loop puzzle1a.pl15 as shown in Fig 2.31, p. 83. All the other predicates pertinent to this type of puzzle
should be defined in the file automated.pl as outlined in Fig. 2.32, p. 84.

Exercise 2.12. To get a semi-automated solution16 of the loop puzzle as indicated by the interactive session
in Fig. 2.35, p. 88, augment the file hand knit.pl by defining link/2 by rules. The augmented file will be the
first version of automated.pl. Below you will find some guidance on the implementation of link/2 . �

Implementing link/2

At variance with the fact-based version of link/2 , now linking intersecting segments will be disallowed. Thus,
for example, whereas

13To obtain a loop, the positions pos(1,4) and pos(1,3) have been joined since they are the two extreme entries (first and last)
of the path found.

14Another approach more in tune with Sect. 2.8.2 will first create in the database at runtime the problem-specific facts defining
link/2 . (Alternatively, a problem-specific (temporary) file akin to hand knit.pl may be created and consulted at runtime.) This
should be accomplished by a second order predicate reading the definitions of size/2 , circle/1 and sharp/1 from loop puzzle1.pl

(or its analogue). Subsequently, run the search as in Sect. 2.8.2.
15The suffix ‘a’ in the filename indicates that the solution process is automated.
16The initial segment is supplied via start state/1 by manual input. A fully automated solution is considered in Exercise 2.13.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

84

Blind Search

�� 	
For Exercise 2.13 only�} �� 	
Define link/2 here (see Exercise 2.12)�} �
�

�
�Define maybe start state/1 here (see

Exercise 2.13)

�

} �� 	
Define number of marks/1 here (see Exercise 2.13)�

⎫⎪⎪⎬
⎪⎪⎭
�
�

�

Modified definition
of goal path/1

(see Exercise 2.13)

�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
�

�

Copy from
hand knit.pl

(see Fig. 2.30)

�

:- module(auto,[link/2,maybe start state/1︸ ︷︷ ︸,goal path/1,is path/1]).

...

...

goal path([H|T]) :- number of marks(M),

length([H|T],M),

last(E,T),

link(H,E).

...

is path([H|T]) :- not(prohibit([H|T])).

prohibit([S|[H|]]) :- not(disjoint(S,H)).

prohibit([S|[|T]]) :- prohibit([S|T]).

disjoint([],).

disjoint([H|T],S) :- not(member(H,S)),

disjoint(T,S).

Figure 2.32: The File automated.pl

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Applications of Prolog

85

Blind Search

link([pos(5,5),pos(4,5),pos(4,4),pos(4,3)],

[pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)]).

follows from the definition of link/2 in hand knit.pl, it cannot be inferred by our rule-based version of link/2
in automated.pl:

?- link([pos(5,5),pos(4,5),pos(4,4),pos(4,3)],S).

S = [pos(4, 2), pos(5, 2), pos(5, 3), pos(5, 4)] ;

S = [pos(6, 6), pos(5, 6)] ;

S = [pos(6, 6), pos(6, 5)] ;

No

Does it matter if this additional condition is imposed? No, the final result won’t be affected as paths containing
self-intersecting linked segments are themselves self-intersecting and will therefore be disallowed by is path/1 .
However, whereas link/2 was previously defined by a relatively small number of facts, the resulting network is
more complex. It will be seen that the imposed condition is easily incorporated in the definition of link/2 and,
as indicated above, it should give rise to a simpler network, i.e. to a one with a lesser number of connections.
(You will be asked to compare the two networks as part of Exercise 2.14, p. 87.)

The dashed arrows in Fig. 2.33 stand for segments connected to [pos(5,5),pos(4,5),pos(4,4),pos(4,3)]

which itself is shown as a continuous arrow. We require furthermore that

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

86

Blind Search

�
�

�
�

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+
1 2 3 4 5 6

Figure 2.33: Constructing a Loop

• link/2 should fail if the first argument is not unified with a valid segment:

?- link([pos(5,3),pos(6,3),pos(6,4),pos(6,5)], S).

No

• link/2 should also fail if the arguments are unified with valid segments, that, however, are not linked:

?- link([pos(6,6),pos(5,6)], [pos(6,6),pos(6,5)]).

No

• link/2 should succeed if the arguments are unified with linked segments:

?- link([pos(2,1),pos(3,1)], [pos(2,2)]).

Yes

We now want to indicate how link/2 should be defined. Let us assume that two marked positions of the
like kind should be linked. This will be accomplished by the clause

link([Pos1|T1],[Pos2|T2]) :- ((circle(Pos1), circle(Pos2)); (sharp(Pos1), sharp(Pos2))),

straight(Pos1,[Pos2|T2],Pos2),

not((member(Pos,T2),(circle(Pos);sharp(Pos)))),

disjoint([Pos1|T1],[Pos2|T2]).

where the auxiliary predicate straight(+P1,?S,+P2) connects any two positions P1 and P2 sharing the same
row or column; details of what is required may be gleaned from the query below.

?- auto:straight(pos(3,4),S,pos(3,8)).

S = [pos(3, 8), pos(3, 7), pos(3, 6), pos(3, 5)]

?- auto:straight(pos(8,3),S,pos(4,3)).

S = [pos(4, 3), pos(5, 3), pos(6, 3), pos(7, 3)]

(We use the prefix auto in the above query as straight/3 is not visible from outside the module auto .)
You are recommended to use the built-in predicates bagof/3 , between/3 and reverse/2 in your definition of
straight/3 .

The corresponding clause of link/2 for linking marked positions of an unlike kind uses the auxiliary predicate
turn(+P1,?R,+P2) where the positions P1 and P2 (not sharing the same row or column) are linked by the list
R taking a right angle turn; for example,

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

87

Blind Search

�

�

�

�

?- consult(loop puzzle1a).

...

?- maybe start state(S), depth first(S,goal path,link, PathFound),

reverse(PathFound, R), flatten(R, F), write term(F,[]).

[pos(1, 4), ..., pos(1, 3)]

Yes

Figure 2.34: Running the Automated Implementation of the Loop Puzzle

?- auto:turn(pos(6,4),R,pos(4,1)).

R = [pos(4, 1), pos(5, 1), pos(6, 1), pos(6, 2), pos(6, 3)]

?- auto:turn(pos(8,3),R,pos(4,2)). 17

R = [pos(4, 2), pos(5, 2), pos(6, 2), pos(7, 2), pos(8, 2)]

To define turn/3 , use straight/3 and append/3 .

Fully Automated Implementation

Exercise 2.13. To get an automated solution of the loop puzzle as indicated by the interactive session in
Fig. 2.34, now augment the file automated.pl as follows.

• Define the predicate maybe start state/1 , and make it a visible predicate by augmenting the module

directive as indicated in Fig. 2.32. It should return on backtracking all segments emanating from an
arbitrary but fixed marked position. As explained in footnote 12, p. 81, one of the segments returned by
maybe start state/1 will form part of the loop we are looking for.

• Define the predicate number of marks/1 and modify the definition of goal path/1 as indicated in
Fig. 2.32.

�

Exercise 2.14. (This exercise explores the idea mentioned in footnote 14, p. 83.) The ‘hand-knit’ solution
outlined in Sect. 2.8.2 involved a manual implementation of link/2 by defining it by Prolog facts. These facts
were, of course, specific to the puzzle to be solved. Having now defined link/2 by rules not referring to the
particulars of the puzzle at hand, we have been able to automate the solution process. An alternative closer
to the original idea would be automatically to define in the database link/2 by the facts applicable to the
particular problem. Use link/2 to define by facts an equivalent new link predicate and use it to solve the
loop puzzle. Determine the number of nodes and the number of directed edges of the corresponding network.
Determine these quantities also for the network associated with the ‘hand-knit’ solution (Sect. 2.8.2) to confirm
that the latter is indeed more complex. �

17The L-shaped segment degenerates here into a straight line since it connects positions in adjacent columns.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

88

Blind Search

⎫⎬
⎭ Manual definition

of start state/1
�

�

�

�

�

?- consult(loop puzzle1a).

% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes

% automated compiled into auto 0.00 sec, 5,752 bytes

% loop puzzle1a compiled 0.05 sec, 14,576 bytes

Yes

?- consult(user).

|: start state([pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

|:
�� ��Ctrl +
�� ��D

% user compiled 34.11 sec, 388 bytes

Yes

?- start state(S), depth first(S,goal path,link, PathFound), reverse(PathFound, R), flatten(R, F),

write term(F,[]).

[pos(1, 4), pos(2, 4), pos(2, 3), pos(2, 2), pos(3, 2), pos(3, 3), pos(3, 4), pos(3, 5), pos(2, 5), pos(1, 5),

pos(1, 6), pos(2, 6), pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3), pos(4, 2), pos(5, 2), pos(5, 3),

pos(5, 4), pos(5, 5), pos(5, 6), pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1),

pos(4, 1), pos(3, 1), pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)]

Yes

Figure 2.35: Semi-Automated Solution of the Loop Puzzle

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Applications of Prolog

89

Blind Search

�

�

�

�

�

}
�

size/2 , circle/1 and sharp/1 to
be taken from loop puzzle1a.pl

(see Fig. 2.31, p. 83)

?- consult([loop puzzle1a| {z }, small board]).

...

% loop_puzzle1a compiled 0.05 sec, 15,076 bytes

% small_board compiled into small_board 0.06 sec, 6,216 bytes

Yes

?- size(Row, Col), bagof(C,circle(C), Cs),

bagof(S,sharp(S), Ss),

make small board(Row, Col, Cs, Ss, Board),

disp board(Board).

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Yes

Figure 2.36: Session for Displaying the Board

2.8.4 Project: Displaying the Board

Exercise 2.15. To display the marks’ position on the board, define

• make small board(+Row,+Col,+Circles,+Sharps,-Board) for unifying Board with the list of lines to
be displayed where each line itself is represented as a list of one-character atoms; and,

• disp board(+Board) for displaying Board on the terminal.

Fig. 2.36 shows how these predicates should behave. (The model solution is in small board.pl.) �

Exercise 2.16. To display a path on the board, define

• make board(+Row,+Col,+Path,-Board) for creating a list-of-lists representation of Board , and,

• show board(+Board) for displaying Board on the terminal.

Path is unified with a list of contiguous co-ordinate entries of the form pos(. . .,. . .) . Fig. 2.37 illustrates the
point for a 2 × 5 board. (The model solution is in board.pl.) �

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

90

Blind Search

�

�

�

�

?- consult(board).

% board compiled into board 0.00 sec, 8,216 bytes

?- make board(2,5,[pos(1,1),pos(1,2),pos(2,2),pos(2,3),pos(2,4),pos(1,4),pos(1,5)], Board),

show board(Board).

+-------+-------+-------+-------+-------+

| | | | | |

| ********* | | ********* |

| | * | | * | |

+-------+---*---+-------+---*---+-------+

| | * | | * | |

| | ***************** | |

| | | | | |

+-------+-------+-------+-------+-------+

Yes

Figure 2.37: Illustrating Exercise 2.16

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Applications of Prolog

91

Blind Search

�

�

�

�

?- make board(2,5,[pos(1,1),pos(1,2),pos(2,2),pos(2,3),pos(2,4),pos(1,4),pos(1,5)], Board),

change board(’c’,[pos(1,2),pos(1,4),pos(2,2),pos(2,4)], Board, NewBoard),

show board(NewBoard).

+-------+-------+-------+-------+-------+

| | | | | |

| ********c | | c******** |

| | * | | * | |

+-------+---*---+-------+---*---+-------+

| | * | | * | |

| | c***************c | |

| | | | | |

+-------+-------+-------+-------+-------+

Yes

Figure 2.38: Illustrating Exercise 2.17

Exercise 2.17. Finally, for putting circles and sharps on the board, a predicate for writing a given character
to specified positions on the board will be useful. This will be accomplished by change board/4 as illustrated in
Fig. 2.38. (In the example we mark corner positions of the path with the character ‘c’.) Define change board/4 .
(The model solution is in board.pl.) �

2.8.5 Complete Implementation

All the building blocks for solving the puzzle and displaying the loop found are now in place. In fact, this can
be done interactively as shown in Fig. 2.39.

Exercise 2.18. It is very tedious to solve the loop puzzle interactively as shown in Fig. 2.39. Combine
now the predicates from above to create a more user-friendly implementation which can be run as shown in
Fig. 2.27, p. 78. You may model your implementation of the dialogue on that in netsearch.pl (see Fig. 2.26,
p. 75). (For the model solution, see loops.pl.) �

2.8.6 Full Board Coverage

Exercise 2.19. Suppose now that the specification is made somewhat stricter. In addition to the initial require-
ments we now also want every small square to be visited by the loop. You should modify your implementation
to include this new feature.

Notes.

1. Whereas the earlier puzzle has a unique solution which happens to visit every position (even if we don’t
insist on this), the case shown in Fig. 2.40 (with the data in loop puzzle2.pl) is more complex and will
admit solutions of both kinds (Figs. 2.41 and 2.42). Use loop puzzle2.pl for testing your solution.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

92

Blind Search

�

�

�

�

?- consult([loop puzzle1a, board]).

% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes

% automated compiled into auto 0.00 sec, 6,252 bytes

% loop_puzzle1a compiled 0.05 sec, 15,076 bytes

% board compiled into board 0.06 sec, 8,168 bytes

?- maybe start state(Start),

depth first(Start,goal path,link, PathFound),

reverse(PathFound, Rev), flatten(Rev, F), last(L, F),

size(Row, Col), make board(Row, Col,[L| F], B0),

bagof(C,circle(C), Cs), change board(’0’, Cs, B0, B1),

bagof(S,sharp(S), Ss), change board(’#’, Ss, B1, B2),

show board(B2).

+-------+-------+-------+-------+-------+-------+
************************0	********#				
*			*	*	*
+---*---+-------+-------+---*---+---*---+---*---+					
*			*	*	*
#	#****************	*	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
*	************************0	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
#	0********************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	************************#********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
**0					
+-------+-------+-------+-------+-------+-------+

Yes

Figure 2.39: Solving the Puzzle Interactively. (See Exercise 2.18.)

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

93

Blind Search

+---+---+---+---+---+---+---+---+
| # | | | | | # | | # | 1
+---+---+---+---+---+---+---+---+
| | | | | | | 0 | | 2
+---+---+---+---+---+---+---+---+
| | | | | | # | | # | 3
+---+---+---+---+---+---+---+---+
| | 0 | | | | | | | 4
+---+---+---+---+---+---+---+---+
| | | 0 | | | | 0 | | 5
+---+---+---+---+---+---+---+---+
| | | | # | # | | | | 6
+---+---+---+---+---+---+---+---+
| | | | | | # | | | 7
+---+---+---+---+---+---+---+---+
| | 0 | | | | | 0 | | 8
+---+---+---+---+---+---+---+---+
| 0 | | | | | | | | 9
+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Figure 2.40: Illustrating Exercise 2.19

2. You may find that due to stack overflow your Prolog implementation won’t be able to solve this more
complex puzzle by Breadth First because the agenda will become very large (Sect. 2.5).

�

2.8.7 Avoiding Multiple Solutions

This may be another desired feature of the implementation: Every loop satisfying the specifications should be
displayed only once. There are two ways a solution may be discovered more than once.

1. As loops can be traversed in two directions, both versions will be found even though the display won’t
allow us to distinguish between them. To illustrate the point, let us consider the loop shown in Fig. 2.42.
We take pos(2,7) to be the seed position. Then the loop can be built up by starting with the segment

[pos(5,7), pos(4,7), pos(3,7)]

bearing in mind that segments are read from right to left. Alternatively,

[pos(1,1), pos(2,1), pos(2,2), pos(2,3), pos(2,4), pos(2,5), pos(2,6)]

may also be taken as the starting segment emanating from the same seed. It starts the loop in the opposite
direction. We won’t be concerned here with duplication due to this cause; we simply accept that as far
as this cause is concerned each solution of the puzzle will be displayed exactly twice.

2. The second cause for finding multiple instances of the same loop is elusive and it won’t arise with every
test case. The case shown in Fig. 2.42 is, however, one of those where this will occur. One of the segments
emanating from the seed position pos(2,7) is [pos(1,6), pos(1,7)], pointing to the sharp in pos(1,6).
The same segment can also be thought of, however, as emanating from the sharp in pos(1,8). This is

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

94

Blind Search

+-------+-------+-------+-------+-------+-------+-------+-------+
| | | | | | | | |
| #***************************************#***************# |
| * | | | | | | | * |
+---*---+-------+-------+-------+-------+-------+-------+---*---+
*							*
**0	*						
						*	*
+-------+-------+-------+-------+-------+-------+---*---+---*---+							
						*	*
**#	*	#					
*					*	*	*
+---*---+-------+-------+-------+-------+---*---+---*---+---*---+							
*					*	*	*
*	0********************************	*	*				
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	*	0*******************************0	*				
*	*	*					*
+---*---+---*---+---*---+-------+-------+-------+-------+---*---+							
*	*	*					*
*	*	********#*******#			*		
*	*			*			*
+---*---+---*---+-------+-------+---*---+-------+-------+---*---+							
*	*			*			*
*	*			*	#********	*	
*	*			*	*	*	*
+---*---+---*---+-------+-------+---*---+---*---+---*---+---*---+							
*	*			*	*	*	*
*	0************************	*	0********				
*					*		
+---*---+-------+-------+-------+-------+---*---+-------+-------+							
*					*		
0**							
+-------+-------+-------+-------+-------+-------+-------+-------+

Figure 2.41: Some positions not visited

+-------+-------+-------+-------+-------+-------+-------+-------+
| | | | | | | | |
| #***************************************#***************# |
| * | | | | | | | * |
+---*---+-------+-------+-------+-------+-------+-------+---*---+
*							*
**0	*						
						*	*
+-------+-------+-------+-------+-------+-------+---*---+---*---+							
						*	*
**#	*	#					
*					*	*	*
+---*---+-------+-------+-------+-------+---*---+---*---+---*---+							
*					*	*	*
*	0************************	*	*	*			
*	*			*	*	*	*
+---*---+---*---+-------+-------+---*---+---*---+---*---+---*---+							
*	*			*	*	*	*
*	*	0********	*	*	0	*	
*	*	*	*	*	*	*	*
+---*---+---*---+---*---+---*---+---*---+---*---+---*---+---*---+							
*	*	*	*	*	*	*	*
*	*	*	#*******#	*	*	*	
*	*	*			*	*	*
+---*---+---*---+---*---+-------+-------+---*---+---*---+---*---+							
*	*	*			*	*	*
*	*	************************#	*	*			
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	0***************************************0	*					
*							*
+---*---+-------+-------+-------+-------+-------+-------+---*---+							
*							*
0**							
+-------+-------+-------+-------+-------+-------+-------+-------+

Figure 2.42: All positions visited

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

95

Blind Search

yet another starting segment giving rise to the same loop. For this version of the loop, the last segment
will be [pos(1,8), pos(2,8)], pointing at the position where the loop was mistakenly deemed to have
started from. Situations such as this will be avoided if we stipulate that the head of the last segment be
identical to the seed position; an augmented definition of goal path/1 to reflect this, is shown in (P-2.1).

Prolog Code P-2.1: Augmented definition of goal path/1

1 goal_path([LastSegment|T]) :- number of marks(M),

2 length([LastSegment|T],M),

3 last(FirstSegment,T),

4 link(LastSegment,FirstSegment),

5 seed([SeedPosition]), % added goal

6 LastSegment = [SeedPosition|_]. % added goal

2.8.8 Variants of the Loop Puzzle

A Loop with ‘Kinks’

In this loop puzzle from [18], one symbol is used only, the circle (0) say, for marking some positions on a
rectangular board. We are required to find a loop such that

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Applications of Prolog

96

Blind Search

• Each board position should be visited by the loop exactly once.

• Pairs of marks lying adjacent on the loop should be connected by L-shaped segments (which may be
referred to as kinks).

An example from [18] is solved by the model implementation in Fig. 2.43.
Exercise 2.20. Write a Prolog solution for the above loop puzzle. It may be assumed that not all four

corner positions are marked. (This assumption will allow a start state (i.e. an initial loop segment) to be ‘grown’
from this empty corner.) It may also be assumed that top and bottom rows, and leftmost and rightmost columns
all contain at least one mark.

You may retain the structure of the earlier implementation. Use the modules small board and board as
before for displaying the positions of the marks and that of the loop. The puzzle specific source files for the
model solution are kinks.pl and kinks1.pl – kinks5.pl. �

A ‘Straight’ Loop

This puzzle originates from [16]. As before, one symbol is used only for marking some positions on a rectangular
board, the circle (0), say. We want to find a loop such that

• Each board position is visited by the loop exactly once.

• Marked positions are traversed without a right angle turn; hence the attribute straight.

An example from [16] is solved by the model implementation in Fig. 2.44.
Exercise 2.21. Write a Prolog implementation for solving the above loop puzzle.

Hints.

1. In the model solution, all viable loop segments of length three form the system states; they may be denoted,
for instance, by a term state/3 with its arguments standing for three contiguous board positions. Given
some state, the link/2 predicate will generate all its children as shown in the queries below for the puzzle
in Fig. 2.44.

?- link(state(pos(3,3),pos(2,3),pos(2,4)),S).

S = state(pos(3, 2), pos(3, 3), pos(2, 3)) ;

S = state(pos(3, 4), pos(3, 3), pos(2, 3)) ;

S = state(pos(4, 3), pos(3, 3), pos(2, 3)) ;

No

?- link(state(pos(3,4),pos(3,3),pos(2,3)),S).

S = state(pos(3, 5), pos(3, 4), pos(3, 3)) ;

No

It is seen that linked segments overlap by one position and that the state/3 term can be thought of as a
‘window’ of size three progressing to the left. The second query above shows that the mark in pos(3,4)

is traversed by a straight segment.

2. Because of the straightness condition, there can’t be any marks in the corners. We may therefore place
the initial segment in the top left-hand corner.

The files straightloop.pl and straightloop1.pl – straightloop3.pl are the puzzle specific source for the
model solution. �

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

97

Blind Search

�

�

�

�

}�

For displaying the boards, use the
modules small board and board

as specified in Sect. 2.8.4.

?- consult(kinks5).
% blindsearches compiled into blindsearches 0.00 sec, 7,312 bytes

% small_board compiled into small_board 0.00 sec, 6,224 bytes
% board compiled into board 0.00 sec, 7,696 bytes
% kinks compiled into kinks 0.00 sec, 34,736 bytes

% kinks5 compiled 0.10 sec, 36,480 bytes
Yes

?- loop.
+---+---+---+---+---+---+---+---+
| | | | 0 | | | | 0 | 1
+---+---+---+---+---+---+---+---+
| | 0 | | | 0 | | | | 2
+---+---+---+---+---+---+---+---+
| | | | 0 | | 0 | | | 3
+---+---+---+---+---+---+---+---+
| | 0 | | | | | | | 4
+---+---+---+---+---+---+---+---+
| | | | | 0 | | 0 | | 5
+---+---+---+---+---+---+---+---+
| | | 0 | | | 0 | | | 6
+---+---+---+---+---+---+---+---+
| | | 0 | | 0 | | | 0 | 7
+---+---+---+---+---+---+---+---+
| 0 | | | 0 | | | | | 8
+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... id.

+-------+-------+-------+-------+-------+-------+-------+-------+
************************0	************************0						
*			*	*			*
+---*---+-------+-------+---*---+---*---+-------+-------+---*---+							
*			*	*			*
*	0****************	0****************	*				
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	****************0	********0	*	*			
*			*	*	*	*	*
+---*---+-------+-------+---*---+---*---+---*---+---*---+---*---+							
*			*	*	*	*	*
*	0********	*	*	*	*	*	
*	*	*	*	*	*	*	*
+---*---+---*---+---*---+---*---+---*---+---*---+---*---+---*---+							
*	*	*	*	*	*	*	*
*	*	*	********0	********0	*		
*	*	*					*
+---*---+---*---+---*---+-------+-------+-------+-------+---*---+							
*	*	*					*
*	*	0****************	0****************				
*	*			*	*		
+---*---+---*---+-------+-------+---*---+---*---+-------+-------+							
*	*			*	*		
*	********0	********0	****************0				
*		*	*				*
+---*---+-------+---*---+---*---+-------+-------+-------+---*---+							
*		*	*				*
0****************	0********************************						
+-------+-------+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.
Yes

Figure 2.43: Solving the Loop Puzzle – Variant One

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

98

Blind Search

�

�

�

�

}�

For displaying the boards, use the
modules small board and board

as specified in Sect. 2.8.4.

?- consult(straightloop3).

% blindsearches compiled into blindsearches 0.00 sec, 7,328 bytes
% small_board compiled into small_board 0.00 sec, 6,224 bytes

% board compiled into board 0.00 sec, 7,712 bytes
% straightloop compiled into straightloop 0.00 sec, 30,048 bytes

% straightloop3 compiled 0.00 sec, 31,192 bytes
Yes
?- loop.

+---+---+---+---+---+---+
| | | | | | | 1
+---+---+---+---+---+---+
| | 0 | | 0 | | | 2
+---+---+---+---+---+---+
| 0 | | | 0 | | | 3
+---+---+---+---+---+---+
| | | 0 | | | | 4
+---+---+---+---+---+---+
| | | 0 | | 0 | | 5
+---+---+---+---+---+---+
| | | | 0 | | | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... id.

+-------+-------+-------+-------+-------+-------+
*********	*************************				
*	*	*			*
+---*---+---*---+---*---+-------+-------+---*---+					
*	*	*			*
*	0	********0********	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
0	****************0********	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
*	********0************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	********0***************0********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
************************0****************					
+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.

Yes

Figure 2.44: Solving the Loop Puzzle – Variant Two

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

99

Blind Search

3 4 5

8 2

7 1 6

Initial State

1 2 3

8 4

7 6 5

Goal State

Figure 2.45: An Eight Puzzle

2.9 Application: The Eight Puzzle

2.9.1 The Puzzle

This is a standard example in AI and it is used for assessing the performance of search algorithms [27].

There are eight tiles, numbered 1 to 8, on a 3 × 3 board. The objective is to transform an initial tile
arrangement into a given goal state; an example is shown in Fig. 2.45. In each transformation step, a new tile
arrangement should be obtained by sliding a tile to the empty position.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Applications of Prolog

100

Blind Search

The number of states of this puzzle is 9! = 362, 880. However, the state space is known to fall into two
distinct components the states of each of which are mutually reachable from within but not from the other
component’s states. Below we show another popular choice for the goal state, residing in the other component.

1 2 3

4 5 6

7 8

Alternative Goal State

Thus, if this latter arrangement is also admitted as a goal state, the puzzle will be solvable for any initial state.

2.9.2 Prolog Implementation

A sample run of the model implementation is shown in Fig. 2.46. The user may choose from eleven test cases;
the first ten are from [15]. The test cases 1–10 are in order of increasing difficulty and are solvable with the
goal state in Fig. 2.45. The eleventh test case is solvable for the alternative goal state.

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

bdf 0.0 0.2 0.5 2.3 3.6 2.9 17.7 144.4 - -
CPU Seconds bf 0.3 0.5 3.0 43.6 99.6 1523 - - - -

id 0.3 0.4 1.2 5.2 8.2 34.2 40.8 556.0 - -

Table 2.1: CPU Times (in Seconds) for the Eight Puzzle with Blind Search

A summary of the results obtained on a 300 MHz PC is shown in Table 2.1: no entries are shown for
unsuccessful runs due to stack overflow or prohibitively long computing times; and, the value chosen for the
horizon in Bounded Depth First search is the minimum number of moves needed to reach the goal state (row
two in Table 2.1).18

Implementation Details

The system’s states are internally represented by the term state/9 ; for example, the initial tile arrangement
in Fig. 2.45 will be represented by state(3,4,5,8,0,2,7,1,6). (The zero stands for ‘no tile’.) The link/2

predicate is defined in eight links.pl by focusing on the movement of the position with no tile; for example,
two of the four states linked to the initial state in Fig. 2.45 are generated by means of the following clauses of
link/2 ,

link(InState,OutState) :- down(InState,OutState).

link(InState,OutState) :- left(InState,OutState).

The pertinent clauses of down/2 and left/2 are respectively defined by

18This will be found by Breadth First or Iterative Deepening as these algorithms find a shortest route to the goal node. In cases
where both these algorithms fail, the minimum number of moves to the goal state has been established by an appropriate informed
search algorithm from Chap. 3.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

101

Blind Search

�

�

�

�

?- consult(eight puzzle).
% blindsearches compiled into blindsearches 0.00 sec, 7,408 bytes

% eight links compiled into links 0.00 sec, 4,152 bytes
% eight puzzle compiled 0.05 sec, 19,576 bytes
Yes

?- tiles.
Start state for test case number 1:

8 1 2
7 3

6 4 5

...

Start state for test case number 6:
3 4 5
8 2

7 1 6

...

Select test case (a number between 1 and 11)... 6.
Select algorithm (df/df dl/bf/bf dl/bdf/id)... id.
% 2,299,419 inferences in 34.17 seconds (67294 Lips)

Solution in 16 steps.
Show result in full? (y/n) y.

3 4 5
8 2
7 1 6

3 4 5

8 1 2
7 6

3 4 5
8 1 2

7 6

...

1 3
8 2 4

7 6 5

1 2 3
8 4
7 6 5

Yes

Figure 2.46: Solving the Eight Puzzle

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

102

Blind Search

down(state(A,B,C,D,0,E,F,G,H),state(A,B,C,D,G,E,F,0,H)).

left(state(A,B,C,D,0,E,F,G,H),state(A,B,C,0,D,E,F,G,H)).

Exercise 2.22. Complete the definition of link/2 . �

All the other problem relevant predicates are defined in the top module in eight puzzle.pl which imports
predicates from both eight links.pl and blindsearches.pl.

Tail Recursion

If the last goal in the body of a recursive clause is the head, it is termed tail recursive. If all recursive clauses of
a predicate are tail recursive, and a cut (!) precedes the last goal in each, the Prolog compiler will not retain
reference to the earlier goals and the implementation will not crash due to stack overflow, and, it will run faster.
Some compilers will recognize tail recursion automatically without the additional cut(s). It is good practice to
use the cut for tail recursive code whatever system one uses.

The entries of Table 2.1 have been obtained by tail recursive versions using cuts. This is an important
addition here as some test cases proved unsolvable without the additional cut.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

