Applications of Prolog Blind Search

Chapter 2

Blind Search

Many problems in Artificial Intelligence (AI) can be formulated as network search problems. The crudest
algorithms for solving problems of this kind, the so called blind search algorithms, use the network’s connectivity
information only. We are going to consider examples, applications and Prolog implementations of blind search
algorithms in this chapter.

Since implementing solutions of problems based on search usually involves code of some complexity, modu-
larization will enhance clarity, code reusability and readibility. In preparation for these more complex tasks in
this chapter, Prolog’s module system will be discussed in the next section.

2.1 Digression on the Module System in Prolog

In some (mostly larger) applications there will be a need to use several input files for a Prolog project. We have
met an example thereof already in Fig. 3.5 of [9, p. 85] where consult/1 was used as a directive to include in
the database definitions of predicates from other than the top level source file. As a result, all predicates thus
defined became visible to the user: had we wished to introduce some further predicates, we would have had to
choose the names so as to avoid those already used. Clearly, there are situations where it is preferable to make
available (that is, to ezport) only those predicates to the outside world which will be used by other non-local
predicates and to hide the rest. This can be achieved by the built-in predicates module/2 and use_module/1.

As an illustrative example, consider the network in Fig. 2.1.! The network connectivity in links.pl is
defined by the predicate 1ink/2 which uses the auxiliary predicate connect/2 (Fig. 2.2).

The first line of links.pl is the module directive indicating that the module name is edges and that the
predicate 1ink/2 is to be exported. All other predicates defined in links.pl (here: connect/2) are local to
the module and (normally) not visible outside this module.

Suppose now that in some other source file, 1ink/2 is used in the definition of some new predicate (Fig. 2.3).
Then, the (visible) predicates from links.pl will be imported by means of the directive

:— use_module(links).>

The new predicate thus defined may be used as usual:

I This is a network from the Al—classic [34].
?Notice that the argument in use_module/1 is the filename without the .pl extension.

Download free eBooks at bookboon.com

47

http://bookboon.com/

Applications of Prolog Blind Search

[I}

Figure 2.1: A Network

?- consult(df1).

% links compiled into edges 0.00 sec, 1,644 bytes
% df1l compiled 0.00 sec, 3,208 bytes

Yes

?2- successors(a,L).

0 _ o The Graduate Programme
I]Olned MITAS because for Engineers and Geoscientists

I wanted real responsibility www.discovermitas.com

I was a construction

SUpErvisor in

the North Sea
advising and

e elping foremen
% solve problems

MAERSK

=

Download free eBooks at bookboon.com

48

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Applications of Prolog Blind Search

:— module (edges, [1ink/2]) .

connect(a,b). connect(a,d). connect(a,s).
connect(b,c). connect(b,e).

connect(d,e). connect(d,s).

connect (e, f).

connect (f,g) .

link(Nodel,Node2) :- connect(Nodel,Node2).
link(Nodel,Node2) :- connect(Node2,Nodel).

Figure 2.2: The File links.pl

:— usemodule(links).

successors (Node,SuccNodes) :-
findall (Successor,link(Node,Successor) ,SuccNodes) .

Figure 2.3: Fragment of the File df1.pl

L =1[b, d, s] ;
No

In our example, the predicate connect/2 will not be available for use (since it is local to the module edges
that resides in links.pl). A local predicate may be accessed, however, by prefizing its name by the module
name in the following fashion:?

?- edges:connect(a,N).

N=5b;
N=4d;
N=s;
No

(Notice the distinct uses of the module name and the name of the file in which the module resides.)

2.2 Basic Search Problem

Let us assume that for the network in Fig. 2.1 we want to find a path from the start node s to the goal node
g. The search may be conducted by using the (associated) search tree shown in Fig. 2.4. It is seen that the

3SWI-Prolog will suggest a correction if the predicate name is used without the requisite prefix:

?2- connect (a,N).
Correct to: edges:connect(a, N)7 yes
N=>b;

Download free eBooks at bookboon.com

49

http://bookboon.com/

Applications of Prolog Blind Search

R 8
/\
T a d
/\ /\
2. ... b d s e s a
/\\ /\
3.¢ e a f b d
/N
4.9 g e
| |

Figure 2.4: The Search Tree

search tree is infinite but highly repetitive. The start node s is at the root node (level 0). At level 1, all tree
nodes are labelled by those network nodes which can be reached in one step from the start node. In general, a

node labelled n in the tree at level ¢ has successor (or child) nodes labelled sq, s, ... if the nodes s1, s2,... in
the network can be reached in one step from node n. These successor nodes are said to be at level £ 4+ 1. The
node labelled n is said to be a parent of the nodes s1, so,.... In Fig. 2.4, to avoid repetition, those parts of the

tree which can be generated by expanding a node from some level above have been omitted.

Some Further Terminology
e The connections between the nodes in a network are called links.
e The connections in a tree are called branches.

e In a tree, a node is said to be the ancestor of another if there is a chain of branches (upwards) which
connects the latter node to the former. In a tree, a node is said to be a descendant of another node if the
latter is an ancestor of the former.

In Fig. 2.5 we show, for later reference, the fully developed (and ’pruned’) search tree. It is obtained from
Fig. 2.4 by arranging that in any chain of branches (corresponding to a path in the network) there should be
no two nodes with the same label (implying that in the network no node be visited more than once). All
information pertinent to the present problem is recorded thus in the file links.pl (Fig. 2.2) by 14nk/2. Notice
that the order in which child nodes are generated by 17nk/2 will govern the development of the trees in Figs. 2.4
and 2.5: children of the same node are written down from left to right in the order as they would be obtained
by backtracking; for example, the node labelled d at level 1 in Fig. 2.4 is expanded by

?2- link(d,Child).

Download free eBooks at bookboon.com

50

http://bookboon.com/

Applications of Prolog Blind Search

AN
AN N LA A

Figure 2.5: The Pruned Search Tree

i
N

EUROPEAN
#1 BUQ INES 8

FINANCIAL TIMES

AR RN RN N R R

! EHHEEN

- =~
Tl

MASTER IN MANAGEMENT 1 == ‘_ I -
- Beecause achieving your dreams is your greatest challenge. IE Business School’s Master in Management taught in English,

Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

8 #gobevond

-

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu

Download free eBooks at bookboon.com

51

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Applications of Prolog Blind Search

Child = e ;
Child = s ;
Child = a ;
No

(The same may be deduced, of course, by inspection from links.pl, Fig. 2.2.) link/2 will serve as input to
the implementations of the search algorithms to be discussed next.

2.3 Depth First Search

The most concise and easy to remember illustration of Depth First is by the conduit model (Fig. 2.6). We start
with the search tree in Fig. 2.5 which is assumed to be a network of pipes with inlet at the root node s. The
tree is rotated by 90° counterclockwise and connected to a valve which is initially closed. The valve is then
opened and the system is observed as it gets flooded under the influence of gravity. The order in which the
nodes are wetted corresponds to Depth First.

Download free eBooks at bookboon.com

52

http://bookboon.com/

Applications of Prolog Blind Search

< U
b<a
<f@
d
f—1I9]
\ b—" < f— [
N

Figure 2.6: Depth First Search — The Conduit Model

“] studied
Engllsh for 16 P
years but.. -~
o flnaIIy
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking
before and after my

" unigue course download

R /u

Download free eBooks at bookboon.com
Qe

53 ;
Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Applications of Prolog Blind Search

:— use_module(links).

path(Nodel,Node2, [Nodel,Node2]) :- link(Nodel,Node2).
path(Nodel,Node2, [Nodel|Path32]) :- link(Nodel,Node3),
write(’visiting node ’), write(Node3), nl,
path(Node3,Node2,Path32) .

Figure 2.7: The File naive.pl

2.3.1 Naive Solution

We may be tempted to use Prolog’s backtracking mechanism to furnish a solution by recursion; our attempt is
shown in Fig. 2.7.* However, it turns out that the implementation does not work due to cycling in the network.
The query shown below illustrates the problems arising.

?- path(s,g,Path).
visiting node a

visiting node
visiting node
visiting node
visiting node

0o T o o

Action (h for help) 7 abort
% Execution Aborted

2.3.2 Incremental Development Using an Agenda

We implement Depth First search incrementally using a new approach. The idea is keeping track of the nodes
to be visited by means of a list, the so called list of open mnodes, also called the agenda. This book—keeping
measure will turn out to be amenable to generalization; in fact, it will be seen that the various search algorithms
differ only in the way the agenda is updated.

First Version

A first, preliminary, form of Depth First search is stated in Algorithm 2.3.1. The definition of the corresponding
predicate, depth_first/2, is shown in Fig. 2.8. (At this stage, we are attempting an implementation which
merely succeeds once the goal node is found.)

4The shaded entries facilitate explanatory screen displays only.

Download free eBooks at bookboon.com

54

http://bookboon.com/

Applications of Prolog Blind Search

Algorithm 2.3.1: DEPTHFIRST(StartNode, Goal N ode)

comment: First temptative implementation of Depth First Search

RootNode «— StartNode

OpenList — [RootN ode]

[H|T] < OpenList

while H # GoalNode
SuccList «— successors of H
OpenList < SuccList H T

do < if OpenList =[]
then return (failure)

[H|T)| < OpenList

return (success)

What is the crucial feature of this algorithm? It is the way the list of open nodes is manipulated. There are
two possibilities:

Excellent Economics and Business programmes at:

ST

university of : AACSB
groningen b ACCREDITED

|7 vy
“The perfect start
of a successful,

b

international career’

j' CLICK HERE

to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education p

Download free eBooks at bookboon.com

55

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Applications of Prolog Blind Search

:— usemodule(links).

depth first(Start,Goal) :- dfs_loop([Start],Goal).

dfs_loop([Goall|_],Goal).
dfs_loop([CurrNode|OtherNodes],Goal) :-
successors (CurrNode, SuccNodes) ,
write(’Node ’), write(CurrNode),
write(’ is being expanded. ’),
append (SuccNodes, OtherNodes, NewOpenNodes) ,
write(’Successor nodes: ’), write(SuccNodes), nl,

write(’Open nodes: ’), write(NewOpenNodes), nl,
dfs_loop(NewOpenNodes,Goal) .

successors(Node,SuccNodes) :-
findall (Successor,link(Node,Successor) ,SuccNodes) .

Figure 2.8: The File df1.pl

e Inspection. We may inspect the agenda’s head to see whether it is the goal node.

e Updating. If the head is not the goal node, we determine the head’s successor or successors. They are
collected into a list, SuccList, say, (which may well be empty) and a new agenda will be formed by
appending the tail of the old agenda to SuccList. The order of entries in the list just created is essential:
the successors of the most recently visited node are placed to the front, thereby becomig candidates for
more immediate attention.

As mentioned earlier, search algorithms differ from each other only in the way the list of open nodes is updated.
The updating mechanism of Depth First is on a last—in—first—out (LIFO) basis.

The (unsatisfactory) behaviour of depth_first/2 in the present form is exemplified in Fig. 2.9. Obviously,
the order of the nodes’ expansion is as expected but we descend into ever greater depths of (the leftmost part
of) the tree in Fig. 2.4. There are two possible solutions to this problem — they will be discussed below.

Using a List of ‘Closed Nodes’

The underlying idea of this approach is that a node on the search tree should not be included in the open
list (again) if a node with the same label has ever been visited before. The examples below will show (and
indeed a moment of reflection should confirm) that this method may not find all goal nodes (or all paths to
the goal node(s)). The realization of the idea is as follows. Once we remove H from the list of open nodes
(Algorithm 2.3.1) we should include H into another list, the list of closed nodes, indicating that it should not
be expanded (i.e. included in the list of open nodes) ever again. This version of Depth First search is shown
as Algorithm 2.3.2. The corresponding Prolog program, df2.pl, is shown in Fig. 2.10. Finally, an interactive
session with this second version of depth_first/2 is shown in Fig. 2.11. The missing (shaded) parts in Fig. 2.10
are goals for displaying information on the progress of the search as seen in Fig. 2.11.

Exercise 2.1. Complete the code in Fig. 2.10 such that the response shown in Fig. 2.11 is achieved. |

Download free eBooks at bookboon.com

56

http://bookboon.com/

Applications of Prolog

Blind Search

f depth_first(s,g).
Node s is being expanded. Successor nodes: [a, d]

Open nodes: [a, d]

Node a is being expanded. Successor nodes: [b, d, s]
Open nodes: [b, d, s, d]

Node b is being expanded. Successor nodes: [c, e, al
Open nodes: [c, e, a, d, s, d]

Action (h for help) 7 abort

&Execu‘cion Aborted

/

Figure 2.9: Hlustrative Query for depth_first/2 — First Version

do

return (success)

Algorithm 2.3.2: DEPTHFIRST(StartNode, Goal Node)

comment: Depth First Search with a List of Closed Nodes

RootNode «— StartNode
OpenList — [RootN ode]
ClosedList — []

[H|T] < OpenList
while H # GoalNode

SuccList < successors of H (1)
OpenList — (SuccList N ClosedList®) H T (2)
ClosedList — [H|ClosedList] (3)

if OpenList = |]
then return (failure)
[H|T]| < OpenList

Download free eBooks at bookboon.com

57

http://bookboon.com/

Applications of Prolog Blind Search

:— usemodule(links).
depth first(Start,Goal) :- ..., % clause O
dfs_loop([Start], [],Goal). %
dfs_loop([Goall|],_,Goal) :- % clause 1
dfs loop([CurrNode|OtherNodes],ClosedList,Goal) :- % clause 2
successors (CurrNode, SuccNodes) , } «——— | Implements (1)
ooo P %
findall (Node, (member (Node,SuccNodes) , %
not (member (Node,ClosedList))) ,Nodes), (™ Implements (2)
append (Nodes,OtherNodes, NewOpenNodes) , %
500 P %
dfs_loop(NewOpenNodes, [CurrNode|ClosedList],Goal). %
successors (Node,SuccNodes) :- t Implements (3)
findall (Successor,link(Node,Successor) ,SuccNodes).

Figure 2.10: The File df2.pl

is currently enrolling in the
Interactive Online
programs:

enroll by October 31st, 2014 and
save up to 11% on the tuition!
pay in 10 installments / 2 years
Interactive Online education
visit

find out more!

Note: LIGS University is not accredited by an
nationallgr recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

Download free eBooks at bookboon.com

58

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Applications of Prolog Blind Search

% depth_first(s,g). \
Open: [s], Closed: []

Node s is being expanded. Successors: [a, d]
Open: [a, d], Closed: [s]

Node a is being expanded. Successors: [b, d, s]
Open: [b, d, d], Closed: [a, s]

Node b is being expanded. Successors: [c, e, al
Open: [c, e, d, d], Closed: [b, a, s]

Node ¢ is being expanded. Successors: [b]

Open: [e, d, d], Closed: [c, b, a, s]

Node e is being expanded. Successors: [f, b, d]
Open: [f, d, d, d], Closed: [e, c, b, a, s]
Node f is being expanded. Successors: [g, e]
Open: [g, d, d, d], Closed: [f, e, c, Db, a, s]
Goal found: g

N /

Figure 2.11: Illustrative Query for depth_first/2 — Second Version

u

Figure 2.12: The New Network Component

Exercise 2.2. Suppose we want to model a network which arises by augmenting the graph in Fig. 2.1 with
the one shown in Fig. 2.12, p. 59. (The new network thus comprises two unconnected components.)

(a) Augment the database in Fig. 2.2 to reflect the connectivity of the new network.
(b) Write down hand computations for the queries
(i) 2- depth_first(d,c).
(ii) 2- depth_first(u,c).
|
The predicate depth_first/2 from df2.pl (Fig. 2.10) finds a goal node (if there is one) but does not return

the correspondig path. (We ignore the shaded clauses in Fig. 2.10 as they are there for explanatory reasons
only.) A new, improved version, depth_first (+Start,+Goal, -Path), say, should return also the Path found,

Download free eBooks at bookboon.com

59

http://bookboon.com/

Applications of Prolog Blind Search

given the Start node and the Goal node. We modify the auxiliary predicate dfs_loop/3 from df2.pl in two
ways.

e Now, its first argument will take the list of open paths (and not that of open nodes). This is the argument
where we accumulate (maintain) the agenda.

e Into an additional (fourth) argument will the path from Start to Goal be copied as soon as it appears
at the head of the agenda. The search is then finished.

e The second and third arguments of dfs_loop/4 will hold, as before, the list of closed nodes and the goal
node, respectively.

The hand computations in Fig. 2.13, p. 61, indicate the required behaviour of the new version of depth_first/3.

Paths will be represented by the lists of nodes visited; internally, they will be read from right to left. For
example, the list [g, f, e, b, a, s] will stand for the path s —a — b — e — f — g. In Fig. 2.13, all paths
we have been temporarily admitted to the agenda which arise by expanding the head of the head of the agenda.
(Expanding a node means finding its successors.) Immediately after expansion, however, those paths have been
removed (indicated by /////) whose head features in the list of closed nodes in the line above. To implement
the corresponding predicate depth_first/3 (Fig.2.14, p. 63), Algorithm 2.3.3 has been used with an auxiliary
procedure EXTENDPATH.

... «eeeeeseeseesfAlcgtel-Lucent @
www.alcatel-lucent.com/careers

—

.
1
g

“ “ ~ ;'

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N

Click on the ad to read more

Download free eBooks at bookboon.com

“\

60

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Applications of Prolog Blind Search

depthfirst(s, g, Path) ~~-

afs-loop([[s]], [], 9, Path) ~~

dfs-toop([[a,s], [&,5]], [$], 9, Path) ~~=>

afs-Loop([[0,0,8], [4,0,8], [5:4/5], [A,s]], [@,S], 9, Path) ~~

dfs-toop([[c,b,a,5], [e,0,a,8], [&b/X A}, [d,a,8], [A,S]], [0,4,8], g, Path) ~~
dfs_Loop([I/g /% A} [e.0,%,8], [&,,8], [&,9]], [¢,0,a,5], ¢, Path) ~~-
dfs-toop([[f,e,0,a,8], [o/¢p/¥ 4}, [d.eb,a,8], [d,as], [4S]], [e.c,b,a,], g, Path) ~~»
dfs-toop([[9.],e,0,0,8], [E/F¢L/%A] [¢.e,0,0,9], [d,a,8], [43]], [].e,c,0,a,], g, Path) ~~

aIS_Loop([[gljlelblalS]V [dlelblalsjl [ala/VS]I [aVS]]Y [IIQYCIbYaYS]V gV [gIIIeYOIQIS]) e

depth_first(s, g, [9.f,,0,a,5]) ~~> success

Figure 2.13: Hand Computations for the Query ?- depth_first(s,g,Path).

Exercise 2.3. Define eztend path(+Nodes, +Path, -NewPaths) from Algorithm 2.3.3. [|

Download free eBooks at bookboon.com

61

http://bookboon.com/

Applications of Prolog Blind Search

Algorithm 2.3.3: DEPTHFIRST(StartNode, Goal Node)

comment: Depth First with Closed Nodes and Open Paths

procedure EXTENDPATH([x1, - ,an], list)
comment: To return [] if the first argument is ||

fori—1to N
do {list; — [x;|list]
return ([listy,--- ,listy])

main
RootNode «— StartNode
OpenPaths «— [[RootN ode]]
ClosedNodes «— [|
[[H|T)|TailOpenPaths] < OpenPaths
while H # GoalNode
SuccList «— successors of H
NewOpenNodes — (SuccList N ClosedList®)
NewPaths — EXTENDPATH(NewOpenNodes, [H|T))
do < OpenPaths <« NewPaths H TailOpenPaths
if OpenPaths = ||
then return (failure)
[[H|T)|TailOpenPaths] < OpenPaths
Path «— REVERSE([H|T])5
output (Path)

In the query shown below, the predicate depth_fist/3 thus defined finds the leftmost path to the goal node
in Fig. 2.4. On backtracking, no further paths to the goal node will be found.

?2- depth_first(s,g,Path).
Path = [s, a, b, e, £, gl ;
No

Path Checking

This technique allows all paths to the goal node to be found. We do not use a list of closed nodes here. Instead,
upon prefixing the head of the agenda by each of the successors of its head, we check for each of the lists thus
created whether it is a path. In Algorithm 2.3.4, p. 64, this test is carried out by the as yet unspecified procedure
IsPaTH. Usually, paths will be required not to contain cycles. Then, the procedure IsPATH checks for distinct
entries of the argument list.®

The main body of Algorithm 2.3.4 has been implemented by the predicate depth_first/4, defined in
df4.pl, Fig. 2.15, p. 65. A few noteworthy features of this implementation of Depth First are as follows.

5For a pseudocode of REVERSE, see [9, p. 24].
6By induction, this test simplifies to showing that the head of a putative path is not an entry in its tail.

Download free eBooks at bookboon.com

62

http://bookboon.com/

Applications of Prolog

Blind Search

:— use_module(links).

depth_first(Start,Goal,PathFound) :-
dfs_loop([[Start]], [1,Goal,PathFoundRev),
reverse (PathFoundRev,PathFound) .

dfs_loop([[Goal|PathTaill |],_,Goal, [Goal|PathTaill).

dfs_loop([[CurrNodel|T] |Others],ClosedList,Goal,PathFound) :-
successors (CurrNode,SuccNodes) ,
findall (Node, (member (Node,SuccNodes) ,
not (member (Node,ClosedList))) ,Nodes),
extend_path(Nodes, [CurrNode|T],Paths),
append (Paths,Others,NewOpenPaths),
dfs_loop(NewOpenPaths, [CurrNode|ClosedList] ,Goal,PathFound) .

successors (Node,SuccNodes) :-
findall(Successor,link(Node,Successor),SuccNodes) .

% auxiliary predicate extend path/3 ...

Figure 2.14: The File df3.pl — Depth First with Closed Nodes and Open Paths

Lepdiny
% Maastricht University o Learniny’

Join the best at
the MaastriCht UniverSity International Business

+ 1% place: MSc International Business

School of Business and 1¢t place: MSc Financial Economics

2" place: MSc Management of Learning

Change

Financial Times Global Masters in Management ranking 2012

« 33" place Financial Times worldwide ranking: MSc

. « 2" place: MSc Economics
| 2
Econom 1CS. + 2" place: MSc Econometrics and Operations Research
+ 2" place:MSc Global Supply Chain Management and

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Maastricht
University is
the best specialist

university in the

Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com

(’\

N

63

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Applications of Prolog Blind Search

e The

arguments of depth_first(+Start,+G Pred,+C Pred, -PathFound), the main predicate, play the

following role:

As before, Start is unified with the start node.

G_Pred is unified with the name of the goal predicate. (In earlier implementations, a goal node
was expected.) Due to this generalization, in more complex applications, now a goal node may be
specified by a condition. Several goal nodes may thus also be accounted for.

The third argument, C_Pred, is unified with the name of the connectivity predicate which in earlier
implementations was link/2. Greater flexibility is afforded by this additional argument. In the
example query in Fig. 2.17, p. 66, the connectivity predicate link/2 is used which is defined in
links.pl (see p. 49) from where it is imported by the first use module/1 directive in df4.pl.

Finally, on return, the last argument is unified with the path found.

Algorithm 2.3.4: DEPTHFIRST(StartNode, G_Pred, C_Pred)

comment: Depth First with Path Checking.
Procedures are assumed available for
e Testing whether a path is a goal path by using
the procedure in G_Pred,

e Finding successors of a node by using the con-
nectivity procedure in C_Pred.

procedure ISPATH(list)
comment: Returns a Boolean value.
Is application specific.

main
RootNode — StartNode
OpenPaths « [[RootN ode]]
[[H|T)|TailOpenPaths] — OpenPaths
while [H|T] is not a goal path
SuccList «— successors of H
ONodes « list of S € SuccList with ISPATH([S, H|T)
NewPaths — EXTENDPATH(ONodes, [H|T))
do < OpenPaths «— NewPaths +H TailOpenPaths
if OpenPaths = ||
then return (failure)
[[H|T)|TailOpenPaths] < OpenPaths
Path — REVERSE([H|T])
output (Path)

Download free eBooks at bookboon.com

64

http://bookboon.com/

Applications of Prolog

Blind Search

:— usemodule(links).
:— use_module(searchinfo).

depth_first(Start,G Pred,C_Pred,PathFound) :-
dfs_loop([[Start]],GPred,CPred,PathFoundRev),
reverse (PathFoundRev,PathFound) .

dfs_loop([Path|_],G Pred,_,Path) :- call(G_Pred,Path).
dfs_loop([[CurrNodel|T] |Others],GPred,C Pred,PathFound) :-
successors (C_Pred,CurrNode,SuccNodes) ,
findall (Node, (member (Node,SuccNodes) ,
is_path([Node,CurrNode|T])) ,Nodes),
extend path(Nodes, [CurrNode|T],Paths),
append (Paths,Others,NewOpenPaths),
dfs_loop(NewOpenPaths,G Pred,C_Pred,PathFound) .

% auxiliary predicates ...

successors (C_Pred,Node,SuccNodes) :-
findall (Successor,call(C_Pred,Node,Successor) ,SuccNodes) |

extend_path([],_, [1).
extend path([Node|Nodes] ,Path, [[Node|Path] |Extended]) :-
extend path(Nodes,Path,Extended) .

Figure 2.15: The File df4.pl — Depth First with Path Checking

:- module(info, [goal path/1, is_path/1]).

goal_path([gl|_1).

is_path([H|IT]) :- not(member(H,T)).

Figure 2.16: The File searchinfo.pl

Download free eBooks at bookboon.com

65

http://bookboon.com/

Applications of Prolog Blind Search

//fjrconsult(df4). ‘\\\

% links compiled into edges 0.05 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes
% df4 compiled 0.05 sec, 4,944 bytes

Yes

2- depth_first(s,goal_path, link,Path).

Path = [s, a, b, e, £, gl ;

Path = [s, a, d, e, £, gl ;

Path [s, 4, e, £, gl ;

Path [s, 4, a, b, e, £, gl ;

N /

Figure 2.17: Interactive Session for depth_first/4 — Path Checking

e The while loop in Algorithm 2.3.4 is implemented by dfs_-loop/4. It uses the predicate is_path/1, an
implementation of the procedure ISPATH.

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

Download free eBooks at bookboon.com &\5(
66

a
S
g
17}
=
S
c
S
g
15}
1<
o
(€]

> edg

V\

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Applications of Prolog Blind Search

[JeY

S I g
f
Figure 2.18: A Network (see Exercise 2.4, p. 67)

This predicate is imported from searchinfo.pl (Fig. 2.16, p. 65) by the second use_module/1 directive
in df4.pl. In the present version of is_path/1, paths are defined to be lists with distinct entries.

e call/2 and call/3, are used (see p. 40) to invoke the imported predicates goal_path/1 and link/2 at
run time.

e It is seen from Fig. 2.17 that on backtracking all paths to the goal node are found.

Exercise 2.4. A new network is shown in Fig. 2.18, p. 67.

(a) Augment the file 1inks.pl to reflect the connectivity of the new network.

(b) Suppose we want to find all paths from s to g such that no edge is traversed more than once but we
don’t mind visiting nodes several times. Define a new version of is_path/1 in searchinfo.pl to this
new specification.

(¢) Run depth_first/4 to find all paths from s to g.

Exercise 2.5. Rewrite the definition of depth_first/4 in Fig. 2.15 using difference lists.

Hints. You should represent paths, as before, by ordinary lists and write the agenda in terms of difference
lists. Modify accordingly the predicates dfs_loop and eztend_path. The latter should be invoked by a new
version of depth_first/4, called depth first dl/4. You should confirm the advantage of using difference
lists by a sample session. (The model solution is found in the file df .pl along with the old version based on
ordinary lists.) |

2.4 Breadth First Search

Another blind search algorithm is Breadth First. It visits the nodes of the search tree level by level from left to
right as indicated in Fig. 2.19. It always finds a shortest path to the goal node. Now the agenda is updated
on a first—in—first-out (FIFO) basis, thus the successors of a node just expanded will be put to the end of the
list of open nodes.

The definition of breadth_first/4 in Fig. 2.20, p. 69, is arrived at by minor modifications of the code in
Fig. 2.15:

Download free eBooks at bookboon.com

67

http://bookboon.com/

Applications of Prolog Blind Search

Figure 2.19: Breadth First

e Rename the loop predicate to bfs_loop,
e Change the order of the first two arguments in the append goal,
e Leave the definition of the auxiliary predicates unchanged.

The behaviour of breadth_first/4 is shown in Fig. 2.21. The same paths are found as before, albeit in a
different order.

Exercise 2.6. Rewrite the definition of breadth first/4 in Fig. 2.20 using difference lists. Compare the
performance of your solution with that of the old version.

Hints. You may take the model solution of Exercise 2.5, p. 175, or your own solution, and make the necessary
changes: rename the loop predicate; modify the updating of the agenda (now represented as a difference list);
and, use extend path dl/3 as defined in the solution of Exercise 2.5. For later reference, the new version
should be placed in the same file as the earlier, list based version (i.e. bf.pl). |

2.5 Bounded Depth First Search

Analysing Depth First and Breadth First will show that (e.g. [29]), on average, to find a goal node,
e Depth First needs less computer memory than Breadth First,

e The time requirement of Breadth First is asymptotically comparable to that of Depth First, and,

Download free eBooks at bookboon.com

68

http://bookboon.com/

Applications of Prolog Blind Search

:— use_module(links).
:— use_module(searchinfo).

breadth_first(Start,GPred,C_Pred,PathFound) :-
bfs_loop([[Start]],GPred,CPred,PathFoundRev),
reverse (PathFoundRev,PathFound) .

bfs_loop([Path|_],G Pred,_,Path) :- call(G_Pred,Path).
bfs_loop([[CurrNode|T] |Others],GPred,C Pred,PathFound) :-
successors (C_Pred,CurrNode,SuccNodes) ,
findall (Node, (member (Node,SuccNodes) ,
is_path([Node,CurrNode|T])) ,Nodes),
extend_path (Nodes, [CurrNode|T],Paths), Modified Goal
append (Others,Paths,NewOpenPaths), }‘7 (see Fig. 2.15,
bfs_loop(NewOpenPaths,G Pred,C Pred,PathFound) . p. 65)

% ili dicat . 5
% auxiliary predicates } [Copy from Fig. 2.15, p. 65]

Figure 2.20: The File bf.pl — Breadth First with Path Checking

ﬁ consult (bf). \

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes
% bf compiled 0.05 sec, 4,948 bytes

Yes

?- breadth_first(s,goal_path, link,Path).

Path = [s, d, e, £, gl ;

Path = [s, a, b, e, £, gl ;

Path [s, a, d, e, £, gl ;

Path [s, 4, a, b, e, £, gl ;

N /

Figure 2.21: Interactive Session for breadth_first/4

Download free eBooks at bookboon.com

69

http://bookboon.com/

Applications of Prolog

Blind Search

e Breadth First always finds the shortest path to the goal node (if there is one) whereas (for infinite search
trees) Depth First may fail to find a goal node even if one exists.

Bounded Depth First search, shown in Algorithm 2.5.1, p. 71, combines the idea of the two search algorithms:
it will explore the search tree up to a specified depth (the horizon) by Depth First. Bounded Depth First is
also the basis for the more sophisticated Iterative Deepening, to be discussed in the next section.

' 3 1 ; A
3 y .-’
N \%W stfatedic Markefilig
I Busine Managsment

p=— ernatlonaks
inancial Busines .

- conomics ——

/

_ # Shipping 1
o g7 Mo _ageeti

Leadership &8
Organisationz i
Psvechaloagy

=

%

._\- \

NORWEGIAN o
BUSINESS SCHOOL ~ ~ £Qus

ACERFQITED

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural learning environment to give you the best
platform to launch inte your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* MSc in Leadership and Organisational Psychology

www.bi.edu/master

Download free eBooks at bookboon.com

70

(’\

by
b3

N

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Applications of Prolog Blind Search

Algorithm 2.5.1: BouNDED_DF(StartNode, G_Pred,C_Pred,
Horizon)

comment: Bounded Depth First Search.
Procedures are assumed available for
e Testing whether a path is a goal path by using
the procedure in G_Pred;

e Finding successors of a node by using the con-
nectivity procedure in C'_Pred.

procedure ISPATH(list)
comment: Returns a Boolean value.
Is application specific.

main
RootNode «— StartNode
OpenPaths < [[RootNodel]
[[H|T)|TailOpenPaths] < OpenPaths
ListLength «+ LENGTH([H|T)])
PathLength < ListLength — 1
while [H|T] is not a goal path
if PathLength < Horizon
SuccList « successors of H
ONodes « list of S € SuccList with
IsPATH([S, H|TT)
NewPaths < EXTENDPATH(ONodes, [H|T))
else {NewPaths «— ||
OpenPaths < NewPaths H TailOpenPaths
if OpenPaths = ||
then return (failure)
[[H|T)|TailOpenPaths] < OpenPaths
ListLength + LENGTH([H|T)])
PathLength < ListLength — 1
Path — REVERSE([H|T])
output (Path)

then

do

Exercise 2.7. In the query below, the predicate bounded_df/5 is used to search the tree in Fig. 2.5 up to
level 5 for the goal node g.

?- bounded_df (s, goal_path, link,5,PathFound) .
PathFound = [s, a, b, e, f, gl ;

PathFound [s, a, d, e, £, gl ;

PathFound [s, 4, e, £, g] ;

Download free eBooks at bookboon.com

71

http://bookboon.com/

Applications of Prolog Blind Search

:— module (bounded depth_first, [bounded df/5]) .7
:— usemodule(links).
:— use_module(searchinfo).

bounded df (Start,G Pred,C Pred,Horizon,PathFound) :-
b_dfs_loop([[Start]],GPred,CPred,Horizon,PathFoundRev),
reverse (PathFoundRev,PathFound) .

}%

% auxiliary predicates ... }

Loop Predicate b_dfs_loop/5’
to be defined here

[Copy from Fig. 2.15, p. 65 J

Figure 2.22: The File bdf.pl — Bounded Depth First (for Exercise 2.7)

No

Based on Algorithm 2.5.1, define bounded df/5 by completing the missing parts in Fig. 2.22.
Hint. The definition of b_dfs_loop/5 may be obtained from that of dfs_loop/4 in Fig. 2.15 by augmenting
the latter with a new argument for the horizon. |

2.6 Iterative Deepening

Bounded Depth First search is invoked here repeatedly with a successively larger horizon. This may be performed
until a path to the goal node is found or until some CPU time limit is exceeded. We choose the former with
unit increment. An implementation and a test run are shown in Figs. 2.23 and 2.24, respectively.® Iterative
Deepening may seem computationally wasteful as at any one stage the previous stage is recomputed but it can
be shown that it is asymptotically optimal (eg [29]).

Exercise 2.8. The interactive session in Fig. 2.24 illustrates that, on backtracking, Iterative Deepening will
rediscover the goal paths found earlier. Modify our implementation of Iterative Deepening such that this does
not happen, i.e. paths found earlier for a smaller horizon should be ignored.

Hint. Fig. 2.25 shows a sample session with this modified version. The previous horizon is recorded in the
database by means of the predicate lastdepth/1. Goal paths shorter than the value herein are ignored. To
implement this, you will have to modify the first clause of b_dfs loop/5 in bdf.pl. You will also have to
arrange for the updating of lastdepth/1 in the database. |

Exercise 2.9. Yet another, and perhaps the most usual form of Tterative Deepening will find the (leftmost)
goal node at the shallowest depth (presuming that one exists) and then stop searching. For our example, such
a version will respond as follows,

?- iterative_deepening (s, goal_path, link,PathFound).

"The predicate bounded_df/5 is declared public because it will be used later in another module (see Sect. 2.6).
8The notes in Fig. 2.24 concerning the horizon refer to Fig 2.5, p. 51.

Download free eBooks at bookboon.com

72

http://bookboon.com/

Applications of Prolog Blind Search

:— use_module (bdf) .

iterative_deepening(Start,GPred,C Pred,PathFound) :-
iterative_deepening aux(1,Start,GPred,C_Pred,PathFound) .

iterative _deepening aux (Depth,Start,GPred,C Pred,PathFound) :-
bounded_df (Start,G Pred,C_Pred,Depth,PathFound) .

iterative _deepening aux(Depth,Start,GPred,C Pred,PathFound) :-
NewDepth is Depth + 1,
iterative_deepening aux(NewDepth,Start,GPred,C_Pred,PathFound) .

Figure 2.23: The File iterd.pl — Iterative Deepening

PathFound = [s, d, e, f, gl ;
No

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your “

topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to Www.helpmyassignment.co.uk for more info E/Helpmyassignment

Download free eBooks at bookboon.com
Qe

73
Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Applications of Prolog Blind Search
//fjrconsult(iterd). ‘\\\
% links compiled into edges 0.06 sec, 1,856 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% bdf compiled into bounded _depth first 0.06 sec, 5,784 bytes
% iterd compiled 0.06 sec, 7,664 bytes
Yes
?- tterative_deepening (s, goal_path, link,PathFound).
PathFound = [s, d, e, £, gl ;
PathFound = [s, a, b, e, f, gl ;
PathFound = [s, a, d, e, £, gl ;
PathFound = [s, d, e, £, gl ;
PathFound = [s, a, b, e, f, gl ;
PathFound = [s, a, d, e, £, gl ;
PathFound = [s, d, e, £, gl ;
PathFound = [s, d, a, b, e, £, gl ;
PathFound = [s, a, b, e, £, gl ;
Figure 2.24: Sample Session — Iterative Deepening
Implement this version of Iterative Deepening. |

Finally, notice that, for finite search trees, Iterative Deepening has an unpleasant feature not found with the
other blind search algorithms: if there is no goal node, Iterative Deepening won’t terminate.® This will cause
problems in applications where a sequence of potential start nodes is supplied to the algorithm some of which
won’t lead to a goal node. (An example of this will be seen in Sect. 2.8).

2.7 The Module blindsearches

The implementations of the algorithms from the preceding sections have been put together in blindsearches.pl
to form the module blindsearches. This allows us to create an implementation of the network search problem
anew which then may serve as a template for other uses of blindsearches. The top level is netsearch.pl,

Fig. 2.26, p. 75. The following shows an interactive session using search/0 from netsearch.pl.

2- consult(netsearch).

% links compiled into edges 0.00 sec, 1,900 bytes
% searchinfo compiled into info 0.00 sec, 1,016 bytes
% blindsearches compiled into blindsearches 0.06 sec, 7,284 bytes

% netsearch compile